Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017304    DOI: 10.1088/1674-1056/acf82a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrically controllable spin filtering in zigzag phosphorene nanoribbon based normal—antiferromagnet—normal junctions

Ruigang Li(李锐岗)1, Jun-Feng Liu(刘军丰)1,†, and Jun Wang(汪军)2,‡
1 Department of Physics, Guangzhou University, Guangzhou 510006, China;
2 Department of Physics, Southeast University, Nanjing 210096, China
Abstract  We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon (ZPNR) based normal—antiferromagnet—normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e2/h. The spin polarization changes with the strength of the electric field and the exchange field, and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.
Keywords:  zigzag phosphorene      electrically controllable spin filter      quantum transport  
Received:  14 May 2023      Revised:  06 September 2023      Accepted manuscript online:  09 September 2023
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.23.Ad (Ballistic transport)  
  73.43.Cd (Theory and modeling)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174077 and 12174051), the Science Foundation of GuangDong Province (Grant No. 2021A1515012363), and GuangDong Basic and Applied Basic Research Foundation (Grant No. 2022A1515110011).
Corresponding Authors:  Jun-Feng Liu, Jun Wang     E-mail:  phjfliu@gzhu.edu.cn;jwang@seu.edu.cn

Cite this article: 

Ruigang Li(李锐岗), Jun-Feng Liu(刘军丰), and Jun Wang(汪军) Electrically controllable spin filtering in zigzag phosphorene nanoribbon based normal—antiferromagnet—normal junctions 2024 Chin. Phys. B 33 017304

[1] Grichuk E S and Manykin E A 2011 JETP Lett. 93 372
[2] Zhang Q, Chan K S and Lin Z 2011 Appl. Phys. Lett. 98 032106
[3] Bercioux D, Urban D F, Romeo F and Citro R 2012 Appl. Phys. Lett. 101 122405
[4] Michetti P, Recher P and Iannaccone G 2010 Nano Lett. 10 4463
[5] Seneor P, Dlubak B, Martin M B, et al. 2012 MRS Bull. 37 1245
[6] Vaklinova K, Hoyer A, Burghard M and Kern K 2016 Nano Lett. 16 2595
[7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 1
[8] Geim A K 2009 Science 324 1530
[9] Wang Z Q, Lü T Y, Wang H Q, Feng Y P and Zheng J C 2019 Front. Phys. 14 1
[10] Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P and Wu K 2018 Sci. Bull. 63 282
[11] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[12] Castellanos-Gomez A, et al. 2014 2D Mater. 1 025001
[13] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
[14] Yang J and Lu Y 2017 Chin. Phys. B 26 034201
[15] Karpan V M, et al. 2007 Phys. Rev. Lett. 99 176602
[16] Fabian J and Žutić I 2008 Semicond. Sci. Technol. 23 114005
[17] Avsar A, et al. 2017 Nat. Phys. 13 888
[18] Farooq M U, Hashmi A and Hong J 2015 ACS Appl. Mater. Interfaces 7 14423
[19] Farooq M U, Hashmi A and Hong J 2016 Sci. Rep. 6 1
[20] Jing Y, Zhang X and Zhou Z 2016 Wires. Comput. Mol. Sci. 6 5
[21] Zhu Z, Li C, Yu W, Chang D, Sun Q and Jia Y 2014 Appl. Phys. Lett. 105 113105
[22] Du Y, Liu H, Xu B, Sheng L, Yin J, Duan C G and Wan X 2015 Sci. Rep. 5 8921
[23] Rahman M, Zhou K C, Xia Q L, Nie Y Z and Guo G H 2017 Phys. Chem. Chem. Phys. 19 25319
[24] Chen H, Li B and Yang J 2017 ACS Appl. Mater. Interfaces 9 38999
[25] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[26] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[27] Keshtan M A M and Esmaeilzadeh M 2015 J. Phys. D:Appl. Phys. 48 485301
[28] Rudenko A N and Katsnelson M I 2014 Phys. Rev. B 89 1
[29] Groth C W, Wimmer M, Akhmerov A R and Waintal X 2014 New J. Phys. 16 063065
[1] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[2] Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires
Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕). Chin. Phys. B, 2024, 33(1): 017305.
[3] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[4] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[5] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[6] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[7] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[8] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[9] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[10] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[11] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[12] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[13] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[14] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
[15] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
No Suggested Reading articles found!