Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057401    DOI: 10.1088/1674-1056/ad1c5e
Recent progress on kagome metals and superconductors Prev   Next  

Superconductivity in kagome metal ThRu$_{\bf 3}$Si$_{\bf 2}$

Yi Liu(刘艺)1,2,†,‡, Jing Li(厉静)1,‡, Wu-Zhang Yang(杨武璋)3, Jia-Yi Lu(卢佳依)1, Bo-Ya Cao(曹博雅)2, Hua-Xun Li(李华旬)1, Wan-Li Chai(柴万力)1, Si-Qi Wu(武思祺)1, Bai-Zhuo Li(李佰卓)4, Yun-Lei Sun(孙云蕾)5, Wen-He Jiao(焦文鹤)2, Cao Wang(王操)4, Xiao-Feng Xu(许晓峰)2, Zhi Ren(任之)3, and Guang-Han Cao(曹光旱)1,6,7,§
1 School of Physics, Zhejiang University, Hangzhou 310058, China;
2 Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China;
3 School of Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064, China;
4 Department of Physics, Shandong University of Technology, Zibo 255049, China;
5 School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou 310015, China;
6 Interdisciplinary Center for Quantum Information, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China;
7 Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We report the physical properties of ThRu$_3$Si$_2$ featured with distorted Ru kagome lattice. The combined experiments of resistivity, magnetization and specific heat reveal bulk superconductivity with $T_{\rm{c}}= 3.8$ K. The specific heat jump and calculated electron--phonon coupling indicate a moderate coupled BCS superconductor. In comparison with LaRu$_3$Si$_2$, the calculated electronic structure in ThRu$_3$Si$_2$ shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it. This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu$_3$Si$_2$. Our work suggests the $T_{\rm{c}}$ and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.
Keywords:  superconductivity      kagome lattice      flat band  
Received:  22 December 2023      Revised:  05 January 2024      Accepted manuscript online: 
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.-q (Properties of superconductors)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12050003, 12004337, and12274369) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ21A040011).
Corresponding Authors:  Yi Liu,E-mail:liuyiphy@zjut.edu.cn;Guang-Han Cao,E-mail:ghcao@zju.edu.cn     E-mail:  liuyiphy@zjut.edu.cn;ghcao@zju.edu.cn

Cite this article: 

Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱) Superconductivity in kagome metal ThRu$_{\bf 3}$Si$_{\bf 2}$ 2024 Chin. Phys. B 33 057401

[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[2] Chowdhury N, Khan K I A, Bangar H, Gupta P, Yadav R S, Agarwal R, Kumar A and Muduli P K 2023 Proceedings of The National Academy of Sciences India Section A-Physical Sciences 93 477
[3] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[4] Yan S, Huse D A and White S R 2011 Science 332 1173
[5] Balents L 2010 Nature 464 199
[6] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, de Vries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202
[7] Xue H, Yang Y, Gao F, Chong Y and Zhang B 2019 Nat. Mater. 18 108
[8] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Suess V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[9] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[10] Peng C, Jiang Y F, Sheng D N and Jiang H C 2021 Adv. Quantum Technol. 4 2000126
[11] Wang Q, Qiu X L, Pei C, Gong B C, Gao L, Zhao Y, Cao W, Li C, Zhu S, Zhang M, Chen Y, Liu K and Qi Y 2023 New J. Phys. 25 043001
[12] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2023 Natl. Sci. Rev. 10 nwac199
[13] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405
[14] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[15] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[16] Ni S, Ma S, Zhang Y, Yuan J, Yang H, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J and Zhao Z 2021 Chin. Phys. Lett. 38 057403
[17] Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109
[18] Bergman D L, Wu C and Balents L 2008 Phys. Rev. B 78 125104
[19] Liu Y, Liu Z Y, Bao J K, Yang P T, Ji L W, Liu J Y, Xu C C, Yang W Z, Chai W L, Lu J Y, Liu C C, Wang B S, Jiang H, Tao Q, Ren Z, Xu X F, Cao C, Xu Z A, Cheng J G and Cao G H 2023 arXiv:2309.13514 [cond-mat.supr-con]
[20] Ku H, Meisner G, Acker F and Johnston D 1980 Solid State Commun. 35 91
[21] Barz H 1980 Mater. Res. Bull. 15 1489
[22] Godart C, Gupta L, Parks R, Rauschwalbe U, Alheim U, Gottwick U, Lieke W and Steglich F 1984 Ann. Chim.-Sci. Mat. 9 979
[23] Rauchschwalbe U, Lieke W, Steglich F, Godart C, Gupta L and Parks R 1984 Phys. Rev. B 30 444
[24] Gui X and Cava R J 2022 Chem. Mater. 34 2824
[25] Li S, Zeng B, Wan X, Tao J, Han F, Yang H, Wang Z and Wen H H 2011 Phys. Rev. B 84 214527
[26] Mielke C, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z and Guguchia Z 2021 Phys. Rev. Mater. 5 034803
[27] Kishimoto Y, Kawasaki Y, Ohno T, Gupta L and Ghosh G 2004 J. Phys. Soc. Jpn. 73 190
[28] Vandenberg J and Barz H 1980 Mater. Res. Bull. 15 1493
[29] Wang C, Wang Z C, Mei Y X, Li Y K, Li L, Tang Z T, Liu Y, Zhang P, Zhai H F, Xu Z A and Cao G H 2016 J. Am. Chem. Soc. 138 2170
[30] Gong C, Tian S, Tu Z, Yin Q, Fu Y, Luo R and Lei H 2022 Chin. Phys. Lett. 39
[31] Gurevich A 2003 Phys. Rev. B 67 184515
[32] Bain G A and Berry J F 2008 J. Chem. Educ. 85 532
[33] Yang H and Lin J 2001 J. Phys. Chem. Solids 62 1861
[34] Mcmillan W 1968 Phys. Rev. 167 331
[35] Li B, Li S and Wen H H 2016 Phys. Rev. B 94 094523
[1] Layered kagome compound Na$_{\bf 2}$Ni$_{\bf 3}$S$_{\bf 4}$ with topological flat band
Junyao Ye, Yihao Lin, Haozhe Wang, Zhida Song, Ji Feng, Weiwei Xie, and Shuang Jia. Chin. Phys. B, 2024, 33(5): 057103.
[2] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[3] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[4] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[5] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[6] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[7] Effects of carrier density and interactions on pairing symmetry in a t2g model
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2024, 33(1): 017404.
[8] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[9] Multi-band analysis on physical properties of superconducting FeSe films
Jian-Tao Che(车剑韬) and Chen-Xiao Ye(叶晨骁). Chin. Phys. B, 2023, 32(9): 097401.
[10] Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2
Yuanhao Dong(董元浩), Ying Fu(付盈), Yixuan Liu(刘以轩), Zhanyang Hao(郝占阳), Le Wang(王乐), Cai Liu(刘才), Ke Deng(邓可), and Jiawei Mei(梅佳伟). Chin. Phys. B, 2023, 32(5): 057506.
[11] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[12] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[13] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[14] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[15] In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5
Xiaoran Yang(杨晓冉), Qi Tang(唐绮), Qiuyun Zhou(周秋韵), Huaiping Wang(王怀平), Yi Li(李意), Xue Fu(付雪), Jiawen Zhang(张加文), Yu Song(宋宇), Huiqiu Yuan(袁辉球), Pengcheng Dai(戴鹏程), and Xingye Lu(鲁兴业). Chin. Phys. B, 2023, 32(12): 127101.
No Suggested Reading articles found!