Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057403    DOI: 10.1088/1674-1056/ad3c31
RAPID COMMUNICATION Prev   Next  

Electronic structure and effective mass of pristine and Cl-doped CsPbBr3

Zhiyuan Wei(魏志远)1,†, Yu-Hao Wei(魏愉昊)2,†, Shendong Xu(徐申东)3,†, Shuting Peng(彭舒婷)1, Makoto Hashimoto4, Donghui Lu(路东辉)4, Xu Pan(潘旭)3, Min-Quan Kuang(匡泯泉)2,‡, Zhengguo Xiao(肖正国)1,§, and Junfeng He(何俊峰)1,¶
1 Department of Physics and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China;
2 Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, and School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
3 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
4 Stanford Synchrotron Radiation Lightsource and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
Abstract  Organic-inorganic lead halide perovskites (LHPs) have attracted great interest owing to their outstanding optoelectronic properties. Typically, the underlying electronic structure would determinate the physical properties of materials. But as for now, limited studies have been done to reveal the underlying electronic structure of this material system, comparing to the huge amount of investigations on the material synthesis. The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena. In pristine CsPbBr$_{3}$, the Fröhlich polarons associated with the Pb-Br stretching modes are proposed to be responsible for the effective mass renormalization. In this regard, it would be very interesting to explore the electronic structure in doped LHPs. Here, we report high-resolution angle-resolved photoemission spectroscopy (ARPES) studies on both pristine and Cl-doped CsPbBr$_{3}$. The experimental band dispersions are extracted from ARPES spectra along both $\bar{\varGamma}$-$\bar{M}$-$\bar{\varGamma }$ and $\bar{X}$-$\bar{M}$-$\bar{X}$ high symmetry directions. DFT calculations are performed and directly compared with the ARPES data. Our results have revealed the band structure of Cl-doped CsPbBr$_{3}$ for the first time, which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr$_{3}$ compound. Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength. These results will help understand the physical properties of LHPs as a function of doping.
Keywords:  lead halide perovskites      electronic structure      effective mass  
Received:  11 January 2024      Revised:  07 March 2024      Accepted manuscript online:  10 April 2024
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.20.Pq (Electronic structure calculations)  
Fund: Project supported by the International Partnership Program of the Chinese Academy of Sciences (Grant No. 123GJHZ2022035MI) and the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000015 and WK3510000012).
Corresponding Authors:  Min-Quan Kuang, Zhengguo Xiao, Junfeng He     E-mail:  mqkuang@swu.edu.cn;zhengguo@ustc.edu.cn;jfhe@ustc.edu.cn

Cite this article: 

Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰) Electronic structure and effective mass of pristine and Cl-doped CsPbBr3 2024 Chin. Phys. B 33 057403

[1] Wells A F 1984 Structural Inorganic Chemistry 5th edn. (Oxford: Oxford University Press)
[2] Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L and Yin L 2018 Nat. Commun. 9 1076
[3] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[4] Tong G, Ono L K and Qi Y 2020 Energy Technol. 8 1900961
[5] Wang Z, Zeng L, Zhu T, Chen H, Chen B, Kubicki D J, Balvanz A, Li C, Maxwell A and Ugur E 2023 Nature 618 74
[6] Du X, Wu G, Cheng J, Dang H, Ma K, Zhang Y W, Tan P F and Chen S 2017 RSC Adv. 7 10391
[7] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D and Yan C 2018 Nature 562 245
[8] Zheng W, Wan Q, Liu M, Zhang Q, Zhang C, Yan R, Feng X, Kong L and Li L 2021 J. Phys. Chem. C 125 3110
[9] Yakunin S, Protesescu L, Krieg F, Bodnarchuk M I, Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W and Kovalenko M V 2015 Nat. Commun. 6 8056
[10] Pan L, Pandey I R, Miceli A, Klepov V V, Chung D Y and Kanatzidis M G 2023 Adv. Opt. Mater. 11 2202946
[11] Dirin D N, Cherniukh I, Yakunin S, Shynkarenko Y and Kovalenko M V 2016 Chem. Mater. 28 8470
[12] Pan L, He Y, Klepov V V, Michael C and Kanatzidis M G 2022 IEEE Trans. Med. Imaging 41 3053
[13] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[14] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[15] Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B and Chowdhury A H 2020 Science 367 1135
[16] Köhnen E, Jǒst M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B and Schlatmann R 2019 Sustain. Energy Fuels 3 1995
[17] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L and Rech B 2016 Science 351 151
[18] Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet- Salomon B, Barraud L, Ding L, Diaz Leon J J and Sacchetto D 2018 Nat. Mater. 17 820
[19] Jenny D, Loferski J and Rappaport P 1956 Phys. Rev. 101 1208
[20] Yablonovitch E, Miller O D and Kurtz S R 2012 38th IEEE Photovoltaic Specialists Conference pp. 001556-001559
[21] Brenner T M, Egger D A, Kronik L, Hodes G and Cahen D 2016 Nat. Rev. Mater. 1 15007
[22] Komesu T, Huang X, Paudel T R, Losovyj Y B, Zhang X, Schwier E F, Kojima Y, Zheng M, Iwasawa H and Shimada K 2016 J. Phys. Chem. C 120 21710
[23] Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C and Fauster T 2016 Phys. Rev. Lett. 117 126401
[24] Sajedi M, Krivenkov M, Marchenko D, Varykhalov A, Sánchez- Barriga J, Rienks E and Rader O 2020 Phys. Rev. B 102 081116
[25] Yang J P, Meissner M, Yamaguchi T, Zhang X Y, Ueba T, Cheng L W, Ideta S, Tanaka K, Zeng X H and Ueno N 2018 Sol. RRL 2 1800132
[26] Zu F, Amsalem P, Egger D A, Wang R, Wolff C M, Fang H, Loi M A, Neher D, Kronik L and Duhm S 2019 J. Phys. Chem. Lett. 10 601
[27] Puppin M, Polishchuk S, Colonna N, Crepaldi A, Dirin D N, Nazarenko O, De Gennaro R, Gatti G, Roth S, Barillot T, Poletto L, Xian R P, Rettig L, Wolf M, Ernstorfer R, Kovalenko M V, Marzari N, Grioni M and Chergui M 2020 Phys. Rev. Lett. 124 206402
[28] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys. 93 025006
[29] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[30] Fröhlich H, Pelzer H and Zienau S 1950 Lond. Edinb. Dublin Phil. Mag. J. Sci. 41 221
[31] Iaru C M, Brodu A, van Hoof N J, Ter Huurne S E, Buhot J, Montanarella F, Buhbut S, Christianen P C, Vanmaekelbergh D and de Mello Donega C 2021 Nat. Commun. 12 5844
[32] Niesner D 2020 APL Mater. 8 090704
[33] Yu J, Liu G, Chen C, Li Y, Xu M, Wang T, Zhao G and Zhang L 2020 J. Mater. Chem. C 8 6326
[34] Wang F, Zhang H, Sun Q, Hafsia A B, Chen Z, Zhang B, Xu Y and Jie W 2020 Cryst. Growth Des. 20 1638
[35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[36] Kresse G and Fürthmuller J 1996 Phys. Rev. B 54 11169
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[39] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029
[40] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
[41] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[42] Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y and Freeman A J 2013 Cryst. Growth Design 13 2722
[43] Cottingham P and Brutchey R L 2016 Chem. Commun. 52 5246
[44] He Y, Matei L, Jung H J, McCall K M, Chen M, Stoumpos C C, Liu Z, Peters J A, Chung D Y and Wessels B W 2018 Nat. Commun. 9 1609
[1] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏), . Chin. Phys. B, 2024, 33(6): 066101.
[2] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[3] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[4] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[5] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[6] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[7] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[8] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[9] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[10] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Intrinsic electronic structure and nodeless superconducting gap of YBa2Cu3O7-δ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy
Shuaishuai Li(李帅帅), Taimin Miao(苗泰民), Chaohui Yin(殷超辉), Yinghao Li(李颖昊), Hongtao Yan(闫宏涛), Yiwen Chen(陈逸雯), Bo Liang(梁波), Hao Chen(陈浩), Wenpei Zhu(朱文培), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Chengtian Lin(林成天), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Lin Zhao(赵林), and X J Zhou(周兴江). Chin. Phys. B, 2023, 32(11): 117401.
[13] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!