|
|
Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys |
Yang Fu(付阳)1,2,†, Chunsheng Gong(龚春生)1,2,†, Zhijun Tu(涂志俊)1,2, Shangjie Tian(田尚杰)3,1,2, Shouguo Wang(王守国)3, and Hechang Lei(雷和畅)1,2,‡ |
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China; 3 Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract We report the detailed crystal structures and physical properties of Ru1-xMox alloys in the solid solution range of x= 0.1—0.9. Structure characterizations indicate that the crystal structure changes from the hcp-Mg-type, to β-CrFe-type, and then bcc-W-type. The measurements of physical properties show that the Ru1-xMox samples with x≥ 0.2 are superconductors and the superconducting transition temperature Tc as a function of Mo content exhibits a dome-like behavior.
|
Received: 21 December 2023
Revised: 05 February 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
74.62.-c
|
(Transition temperature variations, phase diagrams)
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: Project supported by Beijing Natural Science Foundation (Grant No. Z200005), the National Key R&D Program of China (Grant Nos. 2018YFE0202600 and 2022YFA1403800), the National Natural Science Foundation of China (Grant No. 12274459), Beijing National Laboratory for Condensed Matter Physics, and Collaborative Research Project of Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology. |
Corresponding Authors:
Hechang Lei
E-mail: hlei@ruc.edu.cn
|
Cite this article:
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅) Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys 2024 Chin. Phys. B 33 047404
|
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [3] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [4] Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C and Triscone J M 2010 Phys. Rev. Lett. 104 126803 [5] Gor'kov L P and Rashba E I 2001 Phys. Rev. Lett. 87 037004 [6] Gardner H J, Kumar A, Yu L, Xiong P, Warusawithana M P, Wang L, Vafek O and Schlom D G 2011 Nat. Phys. 7 895 [7] Nishiyama M, Inada Y and Zheng G Q 2005 Phys. Rev. B 71 220505 [8] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, et al. 2016 Nat. Commun. 7 10556 [9] Sun Z, Enayat M, Maldonado A, Lithgow C, Yelland E, Peets D C, Yaresko A, Schnyder A P and Wahl P 2015 Nat Commun. 6 6633 [10] Kim H, Wang K, Nakajima Y, Hu R, Ziemak S, Syers P, Wang L, Hodovanets H, Denlinger J D, Brydon P M R, Agterberg D F, Tanatar M A, Prozorov R and Paglione J 2018 Sci. Adv. 4 eaao4513 [12] Shang T, Gawryluk D J, Verezhak J A T, Pomjakushina E, Shi M, Medarde M, Mesot J and Shiroka T 2019 Phys. Rev. Mater. 3 024801 [13] Bauer E, Rogl G, Chen X Q, Khan R T, Michor H, Hilscher G, Royanian E, Kumagai K, Li D Z, Li Y Y, Podloucky R and Rogl P 2010 Phys. Rev. B 82 064511 [14] Wei W, Zhao G J, Kim D R, Jin C, Zhang J L, Ling L, Zhang L, Du H, Chen T Y, Zang J, Tian M, Chien C L and Zhang Y 2016 Phys. Rev. B 94 104503 [15] Bezinge A and Yvon K 1984 J. Less-Common. Met. 99 L27 [16] Bukowski Z, Badurski D, Stepien-Damm J and Troc R 2002 Solid State Commun. 123 283 [17] Morin F J and Maita J P 1963 Phys. Rev. 129 1115 [18] Poon S J 1976 Solid State Commun. 18 1489 [11] Matthias B T 1955 Phys. Rev. 97 74 [19] Flewitt P E J and Tate A J 1972 Less Common Metals 27 339 [20] TOPAS Version 4; Bruker AXS, Karlsruhe, Germany 2007[RefAutoNo] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295[RefAutoNo] McMillan W L 1968 Phys. Rev. 167 331[RefAutoNo] Johnston D C 2013 Supercond. Sci. Technol. 26 115011 [21] Iyo A, Yanagi Y, Kinjo T, Nishio T, Hase I, Yanagisawa T, Ishida S, Kito H, Takeshita N, Oka K, Yoshida Y and Eisaki H 2015 Sci. Rep. 5 10089 [22] Kadowaki K and Woods S B 1986 Solid State Commun. 58 507 [23] Jacko A C, Fjaerestad J O and Powell B J 2009 Nat. Phys. 5 422 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|