Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 038501    DOI: 10.1088/1674-1056/ad1480
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates

Zhaoyao Pan(潘赵耀), Jinpeng Yang(杨金彭), and Xiaoshuang Shen(沈小双)
College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
Abstract  Peng et al. [Science 379 683 (2023)] reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact (PIC)-alumina nanoplates. This method overcomes the trade-off between the open-circuit voltage and the fill factor through two mechanisms: reduced surface recombination velocity and increased bulk recombination lifetime due to better perovskite crystallinity. From arguments of drift-diffusion simulations, we find that an increase in mobility and carrier recombination lifetime in bulk are the key factors for minimizing the resistance-effect from thicker PICs and achieving a maximum power conversion efficiency (PCE) at approximately 25% reduced contact area. Furthermore, the partially replacement of perovskite films with thicker PICs would result in a reduction in short-current density, but the relative low refractive index of the PICs imbedded into the high refractive index perovskite creates light trapping structures that compensate for this loss.
Keywords:  perovskite solar cells      nanostructure      crystalline      mobility  
Received:  15 September 2023      Revised:  17 November 2023      Accepted manuscript online:  12 December 2023
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the Qing-Lan Project from Yangzhou University and the National Natural Science Foundation of China (Grant No. 62375234). We would like to acknowledge Professor Yadong Xu at Soochow University for the support of electromagnetic simulations. All data is available in the main text or the supplementary materials.
Corresponding Authors:  Xiaoshuang Shen     E-mail:  xsshen@yzu.edu.cn

Cite this article: 

Zhaoyao Pan(潘赵耀), Jinpeng Yang(杨金彭), and Xiaoshuang Shen(沈小双) Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates 2024 Chin. Phys. B 33 038501

[1] Peng W, Mao K, Cai F, Meng H, Zhu Z, Li T, Yuan S, Xu Z, Feng X, Xu J, McGehee M D and Xu J 2023 Science 379 683
[2] Walter D, Fell A, Wu Y, Duong T, Barugkin C, Wu N, White T and Weber K 2018 J. Phys. Chem. C 122 11270
[3] Jacobs D A, Shen H, Pfeffer F, Peng J, White T P, Beck F J and Catchpole K R 2018 J. Appl. Phys. 124 225702
[4] El-naggar A M, Osman M M, Alanazi A Q, Mohamed M B, Ebdah M A, Aldhafiri A M, Heiba Z K and Albrithen H A 2022 Appl. Phys. A 128 378
[5] Tirado J, Vasquez-Montoya M, Roldan-Carmona C, Ralaiarisoa M, Koch N, Nazeeruddin M K and Jaramillo F 2019 ACS Appl. Energy Mater. 2 4890
[6] Prathapani S, Bhargava P and Mallicka S 2018 Appl. Phys. Lett. 112 092104
[7] Zouhair S, Yoo S M, Bogachuk D, Herterich J P, Lim J, Kanda H, Son B, Yun H J, Wurfel U, Chahboun A, Nazeeruddin M K, Hinsch A, Wagner L and Kim H 2022 Adv. Energy Mater. 12 2200837
[8] Khelifi S, Burgelman M, Verschraegen J and Belghachi A 2008 Sol. Energy Mater. Sol. Cells 92 1559
[9] Pierret R F 1996 Semiconductor Device Fundamentals (Reading, MA: Addison-Wesley)
[10] Astakhov O, Carius R, Finger F, Petrusenko Y, Borysenko V and Barankov D 2009 Phys. Rev. B 79 104205
[11] Kandada A D, Innocenzo V, Lanzani G and Petrozza A 2016 Unconventional Thin Film Photovoltaics (Royal Society of Chemistry) p. 107
[12] Jin H, Farrar M D, Ball J M, Dasgupta A, Caprioglio P, Narayanan S, Oliver R D J, Rombach F M, Putland B W J, Johnston M B and Snaith H J 2023 Adv. Funct. Mater. 33 2303012
[13] Li H, Xie G, Wang X, Li S, Lin D, Fang J, Wang D, Huang W and Qiu L 2023 Adv. Sci. 10 2300586
[1] Stable photocurrent-voltage characteristics of perovskite single crystal detectors obtained by pulsed bias
Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川). Chin. Phys. B, 2024, 33(4): 048101.
[2] Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
Long Chen(陈龙), Zi-Chen Kan(阚子晨), Wei-Fu Gao(高维富), Ping Duan(段萍), Jun-Yu Chen(陈俊宇), Cong-Qi Tan(檀聪琦), and Zuo-Jun Cui(崔作君). Chin. Phys. B, 2024, 33(1): 015203.
[3] General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents
Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(9): 097204.
[4] Effects of Cu and Co additions on the crystallization and magnetic properties of FeNbB alloy
Wan-Qiu Yu(于万秋), Bo Tian(田博), Ping-Li Zhang(张平丽), Jia-Hui Wang(王佳慧), and Zhong Hua(华中). Chin. Phys. B, 2023, 32(8): 088102.
[5] Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(6): 067305.
[6] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[7] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S. Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[8] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[11] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[12] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[13] Mobility edges in one-dimensional finite-sized models with large quasi-periodic disorders
Qiyun Tang(汤起芸) and Yan He(贺言). Chin. Phys. B, 2023, 32(12): 127202.
[14] Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive
Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2023, 32(10): 107801.
[15] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
No Suggested Reading articles found!