Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 048101    DOI: 10.1088/1674-1056/ad23d7
RAPID COMMUNICATION Prev   Next  

Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias

Xin Liu(刘新)1,2,3,†, Zhi-Long Chen(陈之龙)1,3,4,†, Hu Wang(王虎)1,2,3,‡, Wen-Qing Zhang(张雯清)1,2,3, Hao Dong(董昊)1,3,5, Peng-Xiang Wang(王鹏祥)1,2,3, and Yu-Chuan Shao(邵宇川)1,2,3,6,§
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
4 Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
5 School of Microelectronics, Shanghai University, Shanghai 201899, China;
6 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Abstract  Photocurrent—voltage characterization is a crucial method for assessing key parameters in x-ray or γ -ray semiconductor detectors, especially the carrier mobility lifetime product. However, the high biases during photocurrent measurements tend to cause severe ion migration, which can lead to the instability and inaccuracy of the test results. Given the mixed electronic—ionic characteristics, it is imperative to devise novel methods capable of precisely measuring photocurrent—voltage characteristics under high bias conditions, free from interference caused by ion migration. In this paper, pulsed bias is employed to explore the photocurrent—voltage characteristics of MAPbBr3 single crystals. The method yields stable photocurrent—voltage characteristics at a pulsed bias of up to 30 V, proving to be effective in mitigating ion migration. Through fitting the modified Hecht equation, we determined the mobility lifetime products of 1.0×10-2 cm2· V-1 for hole and 2.78×10-3 cm2· V-1 for electron. This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.
Keywords:  perovskites      ion migration      pulsed bias      mobility lifetime product  
Received:  07 December 2023      Revised:  03 January 2024      Accepted manuscript online:  30 January 2024
PACS:  81.70.-q (Methods of materials testing and analysis)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  81.05.Fb (Organic semiconductors)  
  29.40.-n (Radiation detectors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62104234) and Shanghai Explorer Program (Grant No. 22TS1400100).
Corresponding Authors:  Hu Wang, Yu-Chuan Shao     E-mail:  wanghu@siom.ac.cn;shaoyuchuan@siom.ac.cn

Cite this article: 

Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川) Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias 2024 Chin. Phys. B 33 048101

[1] Yang Z Q, Deng Y H, Zhang X W, Wang S, Chen H Z, Yang S, Khurgin J, Fang N X, Zhang X and Ma R 2018 Adv. Mater. 30 1704333
[2] Li N X, Tao S X, Chen Y H, et al. 2019 Nat. Energy 4 408
[3] Jeong J, Kim M, Seo J, et al. 2021 Nature 592 381
[4] Li G X, Su Z H, Canil L, et al. 2023 Science 379 399
[5] Wei H T and Huang J S 2019 Nat. Commun. 10 1066
[6] Lin R X, Wang Y R, Lu Q W, Tang B B, Li J Y, Gao H, Gao Y, Li H J, Ding C Z, Wen J, Wu P, Liu C S Y, Zhao S Y, Xiao K, Liu Z, Ma C Q, Deng Y, Li L D, Fan F J and Tan H R 2023 Nature 620 994
[7] Zhao Y J, Yin X, Li P W, Ren Z Q, Gu Z K, Zhang Y Q and Song Y L 2023 Nano-Micro Lett. 15 187
[8] He Y H, Petryk M, Liu Z F, Chica D G, Hadar I, Leak C, Ke W J, Spanopoulos I, Lin W W, Chung D Y, Wessels B W, He Z and Kanatzidis M G 2021 Nat. Photon. 15 36
[9] Klepov V V, De Siena M C, Pandey I R, Pan L, Bayikadi K S, Butun S, Chung D Y and Kanatzidis M G 2023 ACS Appl. Mater. Interfaces 15 16895
[10] Cui Y, Wright G W, Ma X, Chattopadhyay K, James R B and Burger A 2001 J. Electron. Mater. 30 774
[11] Cui Y, Groza M, Hillman D, Burger A and James R B 2002 J. Appl. Phys. 92 2556
[12] Ling Y P, Min J H, Liang X Y, Zhang J J, Yang L Q, Zhang Y, Li M, Liu Z X and Wang L J 2017 J. Appl. Phys. 121 034502
[13] Ridzonova K, Belas E, Grill R, Pekarek J and Praus P 2020 Phys. Rev. Appl. 13 064054
[14] Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A and Huang J S 2015 Nat. Mater 14 193
[15] Zhang Y P, Wang Y S, Xu Z Q, Liu J Y, Song J C, Xue Y Z, Wang Z Y, Zheng J L, Jiang L C, Zheng C X, Huang F Z, Sun B Q, Cheng Y B and Bao Q L 2016 ACS Nano 10 7031
[16] Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J and Huang J S 2016 Energy Environ. Sci. 9 1752
[17] Azpiroz J M, Mosconi E, Bisquert J and Angelis D F 2015 Energy Environ. Sci. 8 2118
[18] Duijnstee E A, Ball J M, Le Corre V M, Koster L J A, Snaith H J and Lim J 2020 ACS Energy Lett. 5 376
[19] Le Corre V M, Duijnstee E A, Tambouli O E, Ball J M, Snaith H J, Lim J and Koster L J A 2021 ACS Energy Lett. 6 1087
[20] Duijnstee E A, Le Corre V M, Johnston M B, Koster L J A, Lim J and Snaith H J 2021 Phys. Rev. Appl. 15 014006
[21] Musiienko A, Ceratti D R, Pipek J, Brynza M, Elhadidy H, Belas E, Betušiak M, Delport G and Praus P 2021 Adv. Funct. Mater. 31 2104467
[22] Qin J, Cao G, Xu R, Lin J, Meng H, Wang W Z, Hong Z Y, Cai J C, and Li D M 2022 Chin. Phys. B 31 117102
[23] Wang X Y, Wang H, Chen L R, Shao Y C, and Shao J D 2021 Chin. Phys. B 30 118104
[24] Hecht K 1932 Z. Physik 77 235
[25] Many A 1965 J. Phys. Chem. Solids 26 575
[26] Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L F, He Y, Maculan G, Goriely A, Wu T, Mohammed O F and Bakr O M 2015 Nat. Commun. 6 7586
[27] Tayagaki T, Kogo A, McDonald C, Svrcek V, Matsui T and Yoshita M 2022 IEEE J. Photovolt. 12 1170
[28] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036
[29] Zhang T, Chen H N, Bai Y, Xiao S, Zhu L, Hu C, Xue Q Z and Yang S H 2016 Nano Energy 26 620
[30] Khassaf H, Yadavalli S K, Game O S, Zhou Y Y, Padture N P and Kingon A I 2019 J. Phys. Chem. C 123 4029
[31] Cave J M, Courtier N E, Blakborn I A, Jones T W, Ghosh D, Anderson K F, Lin L Y, Dijkhoff A A, Wilson G J, Feron K, Saiful Islam M, Foster J M, Richardson G and Walker A B 2020 J. Appl. Phys. 128 184501
[1] Infrared optical absorption of Fröhlich polarons in metal halide perovskites
Yu Cui(崔钰), Xiao-Yi Liu(刘晓逸), Xu-Fei Ma(马旭菲), Jia-Pei Deng(邓加培), Yi-Yan Liu(刘怡言), and Zi-Wu Wang(王子武). Chin. Phys. B, 2023, 32(9): 097102.
[2] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[3] Structural, electronic and magnetic properties of Fe-doped strontium ruthenates
Nan Liu(刘楠), Xiao-Chao Wang(王晓超), and Liang Si(司良). Chin. Phys. B, 2023, 32(11): 117101.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[6] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[7] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[8] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[9] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[10] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[11] A simple rule for finding Dirac cones in bilayered perovskites
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(7): 077106.
[12] Photodetectors based on inorganic halide perovskites: Materials and devices
Ying Li(李营), Zhi-Feng Shi(史志锋), Xin-Jian Li(李新建), Chong-Xin Shan(单崇新). Chin. Phys. B, 2019, 28(1): 017803.
[13] Fabrication of mixed perovskite organic cation thin films via controllable cation exchange
Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀). Chin. Phys. B, 2018, 27(2): 024208.
[14] First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs2SnX6 (X= Cl, Br, I)
Hai-Ming Huang(黄海铭), Zhen-Yi Jiang(姜振益), Shi-Jun Luo(罗时军). Chin. Phys. B, 2017, 26(9): 096301.
[15] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
No Suggested Reading articles found!