|
|
Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias |
Xin Liu(刘新)1,2,3,†, Zhi-Long Chen(陈之龙)1,3,4,†, Hu Wang(王虎)1,2,3,‡, Wen-Qing Zhang(张雯清)1,2,3, Hao Dong(董昊)1,3,5, Peng-Xiang Wang(王鹏祥)1,2,3, and Yu-Chuan Shao(邵宇川)1,2,3,6,§ |
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 4 Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; 5 School of Microelectronics, Shanghai University, Shanghai 201899, China; 6 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China |
|
|
Abstract Photocurrent—voltage characterization is a crucial method for assessing key parameters in x-ray or γ -ray semiconductor detectors, especially the carrier mobility lifetime product. However, the high biases during photocurrent measurements tend to cause severe ion migration, which can lead to the instability and inaccuracy of the test results. Given the mixed electronic—ionic characteristics, it is imperative to devise novel methods capable of precisely measuring photocurrent—voltage characteristics under high bias conditions, free from interference caused by ion migration. In this paper, pulsed bias is employed to explore the photocurrent—voltage characteristics of MAPbBr3 single crystals. The method yields stable photocurrent—voltage characteristics at a pulsed bias of up to 30 V, proving to be effective in mitigating ion migration. Through fitting the modified Hecht equation, we determined the mobility lifetime products of 1.0×10-2 cm2· V-1 for hole and 2.78×10-3 cm2· V-1 for electron. This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.
|
Received: 07 December 2023
Revised: 03 January 2024
Accepted manuscript online: 30 January 2024
|
PACS:
|
81.70.-q
|
(Methods of materials testing and analysis)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
81.05.Fb
|
(Organic semiconductors)
|
|
29.40.-n
|
(Radiation detectors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62104234) and Shanghai Explorer Program (Grant No. 22TS1400100). |
Corresponding Authors:
Hu Wang, Yu-Chuan Shao
E-mail: wanghu@siom.ac.cn;shaoyuchuan@siom.ac.cn
|
Cite this article:
Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川) Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias 2024 Chin. Phys. B 33 048101
|
[1] Yang Z Q, Deng Y H, Zhang X W, Wang S, Chen H Z, Yang S, Khurgin J, Fang N X, Zhang X and Ma R 2018 Adv. Mater. 30 1704333 [2] Li N X, Tao S X, Chen Y H, et al. 2019 Nat. Energy 4 408 [3] Jeong J, Kim M, Seo J, et al. 2021 Nature 592 381 [4] Li G X, Su Z H, Canil L, et al. 2023 Science 379 399 [5] Wei H T and Huang J S 2019 Nat. Commun. 10 1066 [6] Lin R X, Wang Y R, Lu Q W, Tang B B, Li J Y, Gao H, Gao Y, Li H J, Ding C Z, Wen J, Wu P, Liu C S Y, Zhao S Y, Xiao K, Liu Z, Ma C Q, Deng Y, Li L D, Fan F J and Tan H R 2023 Nature 620 994 [7] Zhao Y J, Yin X, Li P W, Ren Z Q, Gu Z K, Zhang Y Q and Song Y L 2023 Nano-Micro Lett. 15 187 [8] He Y H, Petryk M, Liu Z F, Chica D G, Hadar I, Leak C, Ke W J, Spanopoulos I, Lin W W, Chung D Y, Wessels B W, He Z and Kanatzidis M G 2021 Nat. Photon. 15 36 [9] Klepov V V, De Siena M C, Pandey I R, Pan L, Bayikadi K S, Butun S, Chung D Y and Kanatzidis M G 2023 ACS Appl. Mater. Interfaces 15 16895 [10] Cui Y, Wright G W, Ma X, Chattopadhyay K, James R B and Burger A 2001 J. Electron. Mater. 30 774 [11] Cui Y, Groza M, Hillman D, Burger A and James R B 2002 J. Appl. Phys. 92 2556 [12] Ling Y P, Min J H, Liang X Y, Zhang J J, Yang L Q, Zhang Y, Li M, Liu Z X and Wang L J 2017 J. Appl. Phys. 121 034502 [13] Ridzonova K, Belas E, Grill R, Pekarek J and Praus P 2020 Phys. Rev. Appl. 13 064054 [14] Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A and Huang J S 2015 Nat. Mater 14 193 [15] Zhang Y P, Wang Y S, Xu Z Q, Liu J Y, Song J C, Xue Y Z, Wang Z Y, Zheng J L, Jiang L C, Zheng C X, Huang F Z, Sun B Q, Cheng Y B and Bao Q L 2016 ACS Nano 10 7031 [16] Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J and Huang J S 2016 Energy Environ. Sci. 9 1752 [17] Azpiroz J M, Mosconi E, Bisquert J and Angelis D F 2015 Energy Environ. Sci. 8 2118 [18] Duijnstee E A, Ball J M, Le Corre V M, Koster L J A, Snaith H J and Lim J 2020 ACS Energy Lett. 5 376 [19] Le Corre V M, Duijnstee E A, Tambouli O E, Ball J M, Snaith H J, Lim J and Koster L J A 2021 ACS Energy Lett. 6 1087 [20] Duijnstee E A, Le Corre V M, Johnston M B, Koster L J A, Lim J and Snaith H J 2021 Phys. Rev. Appl. 15 014006 [21] Musiienko A, Ceratti D R, Pipek J, Brynza M, Elhadidy H, Belas E, Betušiak M, Delport G and Praus P 2021 Adv. Funct. Mater. 31 2104467 [22] Qin J, Cao G, Xu R, Lin J, Meng H, Wang W Z, Hong Z Y, Cai J C, and Li D M 2022 Chin. Phys. B 31 117102 [23] Wang X Y, Wang H, Chen L R, Shao Y C, and Shao J D 2021 Chin. Phys. B 30 118104 [24] Hecht K 1932 Z. Physik 77 235 [25] Many A 1965 J. Phys. Chem. Solids 26 575 [26] Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L F, He Y, Maculan G, Goriely A, Wu T, Mohammed O F and Bakr O M 2015 Nat. Commun. 6 7586 [27] Tayagaki T, Kogo A, McDonald C, Svrcek V, Matsui T and Yoshita M 2022 IEEE J. Photovolt. 12 1170 [28] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036 [29] Zhang T, Chen H N, Bai Y, Xiao S, Zhu L, Hu C, Xue Q Z and Yang S H 2016 Nano Energy 26 620 [30] Khassaf H, Yadavalli S K, Game O S, Zhou Y Y, Padture N P and Kingon A I 2019 J. Phys. Chem. C 123 4029 [31] Cave J M, Courtier N E, Blakborn I A, Jones T W, Ghosh D, Anderson K F, Lin L Y, Dijkhoff A A, Wilson G J, Feron K, Saiful Islam M, Foster J M, Richardson G and Walker A B 2020 J. Appl. Phys. 128 184501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|