Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 088102    DOI: 10.1088/1674-1056/acd525
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of Cu and Co additions on the crystallization and magnetic properties of FeNbB alloy

Wan-Qiu Yu(于万秋), Bo Tian(田博), Ping-Li Zhang(张平丽), Jia-Hui Wang(王佳慧), and Zhong Hua(华中)
College of Physics, Jilin Normal University, Siping 136000, China
Abstract  The nanocrystalline-forming element Cu and magnetic element Co are commonly used as additive elements to tune the structure and improve the properties of alloys. In this study, four kinds of amorphous alloys, Fe72Nb12B16, Fe72Nb12B15Cu1, Fe36Co36Nb12B16, and Fe36Co36Nb12B15Cu1, were prepared by melt-spinning and annealed at various temperatures to investigate the effects of Cu and Co additions, individually and in combination, on the crystallization and magnetic properties of Fe72Nb12B16 alloy. The four kinds of alloys exhibited different crystallization behaviors with different primary crystallization phases observed. For the Fe72Nb12B16 alloy, only the α-Mn-type metastable phase formed after annealing. The addition of 1 at.% Cu and 36 at.% Co led to the observation of the α-Mn-type and β-Mn-type metastable phases, respectively, and a reduction in the crystallization volume fraction in the metastable phase. The Fe36Co36Nb12B15Cu1 alloy only exhibited α-Fe(Co) phase as a primary phase, and the addition of both Cu and Co completely inhibited the precipitation of the metastable phase. Cu clusters were found in energy dispersive spectroscopy elemental maps. Compared with other alloys, Fe36Co36Nb12B15Cu1 alloy with both Cu and Co exhibited a lower coercivity (Hc) below 973 K.
Keywords:  alloys      nanocrystalline      Cu addition      Co addition  
Received:  07 March 2023      Revised:  23 April 2023      Accepted manuscript online:  12 May 2023
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.21905110), the Natural Science Foundation of Jilin Province of China(Grant No.YDZJ202201ZYTS319), and the Sinoma Institute of Materials Research Co., Ltd. of Guangzhou Province of China.
Corresponding Authors:  Wan-Qiu Yu     E-mail:  yuwanqiu2004@126.com

Cite this article: 

Wan-Qiu Yu(于万秋), Bo Tian(田博), Ping-Li Zhang(张平丽), Jia-Hui Wang(王佳慧), and Zhong Hua(华中) Effects of Cu and Co additions on the crystallization and magnetic properties of FeNbB alloy 2023 Chin. Phys. B 32 088102

[1] Zhang J H, Zhang C Z, Zhang X X, Li Z E, He A N, Song J C and Chang C T 2021 J. Alloys Compd. 866 158991
[2] Ohta M and Chiwata N 2020 J. Magn. Magn. Mater. 509 166838
[3] Xie L, Wang A D, Yue S Q, He A N, Chang C T, Li Q, Wang X M and Liu C T 2019 J. Magn. Magn. Mater. 483 158
[4] Liu T, Li F C, Wang A D, Xie L, He Q F, Luan J H, He A N, Wang X M, Liu C T and Yang Y 2019 J. Alloys Compd. 776 606
[5] Ri M C, Ding D W, Sun Y H and Wang W H 2021 J. Mater. Sci. Technol. 69 1
[6] Sun Y M, Wang Z Q, Xu S C and Hua Z 2021 Chin. Phys. B 30 038103
[7] Lyasotsky I V, Dyakonova N B and Dyakonov D L 2014 J. Alloys Compd. 586 S20
[8] Yoshizawa Y, Oguma S and Yamauchi K 1988 J. Appl. Phys. 64 6044
[9] Suzuki K, Makino A, Kataoka N, Inoue A and Masumoto T 1991 Mater. Trans., JIM 32 93
[10] Willard M A, Laughlin D E, McHenry M E, Thoma D, Sickafus K, Cross J O and Harris V G 1998 J. Appl. Phys. 84 6773
[11] Makino A, Men H, Kubota T, Yubuta K and Inoue A 2009 IEEE Trans. Magn. 45 4302
[12] Liu T, Kong F Y, Xie L, Wang A D, Chang C T, Wang X M and Liu C T 2017 J. Magn. Magn. Mater. 441 174
[13] Jiang T H, Zhao M, Xiang Q C, Ren Y L, Li Q F and Qiu K Q 2020 AIP Adv. 10 105123
[14] Jha R, Diercks D R, Chakraborti N, Stebner A P and Ciobanu C V 2019 Scripta Mater. 162 331
[15] Yu W Q, Lin H, Lu L P, Wang L and Xing G Z 2020 Phys. Lett. A 384 126640
[16] Yoon S and Lee S J 2014 Mater. Trans. 55 1517
[17] Kong F L, Men H, Zhang M X, Liu T C, Xie G Q and Shen B L 2012 Appl. Phys. A 108 211
[18] Ohkubo T, Kai H, Ping D H, Hono K and Hirotsu Y 2001 Scripta Mater. 44 971
[19] Hono K, Ping D H, Ohnuma M and Onodera H 1999 Acta Mater. 47 997
[20] Ping D H, Wu Y Q, Hono K, Willard M A, Mchenry M E and Laughlin D E 2001 Scripta Mater. 45 781
[21] He A N, Li J W, Wang M K, Wang A D, Xiao Y, Dong Y Q, Guo H, Jiang R R, Xia W X, Dong L H, Wang H D and Ge J Y 2022 J. Mater. Sci. Technol. 120 1
[22] Yu W Q, Lu L P, Zuo B, Hua Z, Xing G L, Wang X Y and Wang D D 2019 Appl. Phys. A 125 636
[23] Xiang R, Zhou S X, Dong B S, Zhang G Q, Li Z Z, Wang Y G and Chang C T 2014 Prog. Nat. Sci. 24 649
[24] Xue L, Yang W M, Liu H S, Men H, Wang A D, Chang C T and Shen B L 2016 J. Magn. Magn. Mater. 419 198
[25] Zuo B, Yu X, Wang X N and Wang Z Q 2019 Met. Sci. Heat Treat. 61 23
[26] Xiong X Y, Muddle B C and Finlayson T R 2003 J. Phys. D: Appl. Phys. 36 223
[27] Takeshi N and Yukichi U 2006 ISIJ Int. 46 1371
[28] Sun Y M, Yu W Q, Long D, Zhang Y and Hua Z 2015 Mod. Phys. Lett. B 29 1550196
[29] Imafuku M, Sato S, Koshiba H, Matsubara E and Inoue A 2001 Scripta Mater. 44 2369
[30] Dyakonova N B, Dyakonov D L and Lyasotskyi I V 2014 J. Alloys Compd. 586 S41
[31] Zamiri R, Hamid-Reza B, Zakaria A, Jorfi R, Zamiri G, Rebelo A and Omar A A 2013 Chin. Phys. Lett. 30 118103
[32] Jiang M Y, Zhu Z J, Chen C K, Li X and Hu X J 2019 Acta Phys. Sin. 68 148101 (in Chinese)
[33] Pradeep K G, Herzer G, Choi P and Raabe D 2014 Acta Mater. 68 295
[34] Blázquez J S, Franco V and Conde A 2002 J. Phys.: Condens. Matter 14 11717
[35] Takeuchi A and Inoue A 2005 Mater. Trans. 46 2817
[36] Suzuki K, Ito N, Garitaonandia J S, Cashion J D and Herzer G 2008 J. Non-Cryst. Solids 354 5089
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[3] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[4] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[5] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[6] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[7] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[8] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[9] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[10] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[11] Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys
Hüseyin Yıldırım and Ali Kemal Garip. Chin. Phys. B, 2021, 30(10): 108201.
[12] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[13] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[14] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[15] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
No Suggested Reading articles found!