|
|
Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope |
Zhetong Liu(刘哲彤)1,2, Bingyao Liu(刘秉尧)1,2, Dongdong Liang(梁冬冬)3,4, Xiaomei Li(李晓梅)1, Xiaomin Li(李晓敏)5, Li Chen(陈莉)1, Rui Zhu(朱瑞)1,†, Jun Xu(徐军)1, Tongbo Wei(魏同波)3,4,‡, Xuedong Bai(白雪冬)5,§, and Peng Gao(高鹏)1,2,6,¶ |
1 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; 2 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; 3 Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 6 International Center for Quantum Materials, Peking University, Beijing 100871, China |
|
|
Abstract To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level, cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In0.15Ga0.85N five-period multiquantum wells. The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy, and the bandgaps of In0.15Ga0.85N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra. The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed. Our study establishing the direct relationship between the atomic structure of InxGa1-xN multiquantum wells and photoelectric properties provides useful information for nitride applications.
|
Received: 29 August 2023
Revised: 14 December 2023
Accepted manuscript online: 09 January 2024
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
62.40.+i
|
(Anelasticity, internal friction, stress relaxation, and mechanical resonances)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Projct supported by the National Key R&D Program of China (Grant No. 2019YFA0708202), the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017), the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matter, and the Youth Supporting Program of Institute of Semiconductors. |
Corresponding Authors:
Rui Zhu, Tongbo Wei, Xuedong Bai, Peng Gao
E-mail: zhurui@pku.edu.cn;tbwei@semi.ac.cn;xdbai@iphy.ac.cn;pgao@pku.edu.cn
|
Cite this article:
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏) Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope 2024 Chin. Phys. B 33 038502
|
[1] Ponce F A and Bour D P 1997 Nature 386 351 [2] Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nat. Photonics 3 179 [3] Kobayashi Y, Kumakura K, Akasaka T and Makimoto T 2012 Nature 484 223 [4] Guo L, Guo Y, Wang J and Wei T 2021 Journal of Semiconductors 42 081801 [5] Humphreys C J 2008 MRS Bull. 33 459 [6] Schubert E F and Kim J K 2005 Science 308 1274 [7] Sheu J K, Chang S J, Kuo C H, Su Y K, Wu L W, Lin Y C, Lai W C, Tsai J M, Chi G C and Wu R K 2003 IEEE Photonics Technol. Lett. 15 18 [8] Kuo Y, Chang J, Tsai M and Yen S 2009 Appl. Phys. Lett. 95 011116 [9] Rozhansky I V and Zakheim D A 2007 Phys. Stat. Sol. (a) 204 227 [10] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507 [11] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102 [12] Liu M, Yang Y, Xiang P, Chen W, Han X, Lin X, Lin J, Luo H, Liao Q, Zang W, Wu Z, Liu Y and Zhang B 2015 Chin. Phys. B 24 068503 [13] Wael Z T, Gil Y H, Sang W R, June S H and June K L 2016 Optical Materials 55 17 [14] James T G, Zhang S, Bertrand R, Fu W, Bao A, Zhu D, David J, Ashley H, Ian B, David S, Menno J, Colin J H and Rachel A O 2015 Nano Lett. 15 7639 [15] Sung K L, Megan B, Qian F, Li Y, Charles M L and Silvija G 2009 Nano Lett. 9 3940 [16] Peter S, Shawn W and Eli S 2019 Nature 570 354 [17] Michal, V, Daniel K A, Fariah H, Katherine S and Jennifer A D 2018 Nat. Commun. 9 4658 [18] Sheng B, Schmidt G, Bertram F, Veit P, Wang Y, Wang T, Rong X, Chen Z, Wang P, Bläsing J, Miyake H, Li H, Guo S, Qin Z, Strittmatter A, Shen B, Christen J and Wang X 2020 Photonics Research 8 610 [19] Deguchi T, Shikanai A, Torii K, Sota T, Chichibu S and Nakamura S 1998 Appl. Phys. Lett. 72 3329 [20] Cho Y H, Song J J, Keller S, Minsky M S, Hu E, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1128 [21] Rothwarf A 1973 J. Appl. Phys. 44 752 [22] Merano M, Sonderegger S, Crottini A, Collin S, Renucci P, Pelucchi E, Malko A, Baier M H, Kapon E, Deveaud B and Ganiere J D 2005 Nature 438 479 [23] Sonderegger S, Feltin E, Merano M, Crottini A, Carlin J F, Sachot R, Deveaud B, Grandjean N and Ganiere J D 2006 Appl. Phys. Lett. 89 232109 [24] Marcus M, Gordon S, Sebastian M, Peter V, Frank B, Robert A R L, Dominik H, Wang J, Tobias M, Ferdinand S and Jurgen C 1999 Phys. Status Solidi B 253 112 [25] Kuo Y, Liou B, Yen S and Chu H 2004 Opt. Commun. 237 363 [26] Egerton R F 2009 Rep. Prog. Phys. 72 016502 [27] Miller D, Chemla D, Damen T, Gossard A, Wiegmann W, Wood T and Burrus C 1984 Phys. Rev. Lett. 53 2173 [28] Fiorentini V, Bernardini F, Della S F, Di Carlo A and Lugli P 1999 Phys. Rev. B 60 8849 [29] Tetsuya T, Shigetoshi S, Hiromitsu S, Hiroshi A, Isamu A, Yawara K, Shigeru N, Yishifumi Y, Norihide Y 1998 Journal of Crystal Growth 189 616 [30] RouviereJ L and Sarigiannidou E 2005 Ultramicroscopy 106 1 [31] Zhao C W, Xing Y M, Bai P C, Hou J F and Dai X J 2008 Physica B 403 1838 [32] Jayhoon C and Lew R 2008 Ultramicroscopy 108 1595 [33] Anna R, Aleksandra W, Kamil S, Uwe J, Ute Z, Andrian V K, Agnieszka P, Marta S, Kamil K, Zbigniew R Z and Bogdan J K 2016 J. Appl. Phys. 120 194304 [34] Xue H, Pan N, Li M, Wu Y, Wang X and Hou J 2010 Nanotechnology 21 215701 [35] Zhang J, Cai L, Zhang B, Hu X, Jiang F, Yu J and Wang Q 2009 Appl. Phys. Lett. 95 161110 [36] Speck J S and Rosner S J 1999 Physica B 273 24 [37] Yacobi B G and Holt D B 1986 J. Appl. Phys. 59 R1 [38] Agata B, Lucja M, Julita S, Szymon G, Jan W, Dario S and Piotr P 2021 Scientifc Reports 11 21 [39] Barbara B, Frank B, Juergen C, Thomas H, Armin D and Alois K 2009 Appl. Phys. Lett. 95 032106 [40] ShenY C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101 [41] Mukai T, Yamada M and Nakamura S 1999 Jpn. J. Appl. Phys. 38 3976 [42] Albrecht M, Weyher J L, Lucznik B, Grzegory I and Porowski S 2008 Appl. Phys. Lett. 92 231909 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|