Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 038502    DOI: 10.1088/1674-1056/ad1c56
RAPID COMMUNICATION Prev   Next  

Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope

Zhetong Liu(刘哲彤)1,2, Bingyao Liu(刘秉尧)1,2, Dongdong Liang(梁冬冬)3,4, Xiaomei Li(李晓梅)1, Xiaomin Li(李晓敏)5, Li Chen(陈莉)1, Rui Zhu(朱瑞)1,†, Jun Xu(徐军)1, Tongbo Wei(魏同波)3,4,‡, Xuedong Bai(白雪冬)5,§, and Peng Gao(高鹏)1,2,6,¶
1 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China;
2 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
3 Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
6 International Center for Quantum Materials, Peking University, Beijing 100871, China
Abstract  To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level, cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In0.15Ga0.85N five-period multiquantum wells. The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy, and the bandgaps of In0.15Ga0.85N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra. The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed. Our study establishing the direct relationship between the atomic structure of InxGa1-xN multiquantum wells and photoelectric properties provides useful information for nitride applications.
Keywords:  nitride multiquantum wells      defect      cathodoluminescence      scanning transmission electron microscopy  
Received:  29 August 2023      Revised:  14 December 2023      Accepted manuscript online:  09 January 2024
PACS:  85.60.Jb (Light-emitting devices)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Projct supported by the National Key R&D Program of China (Grant No. 2019YFA0708202), the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017), the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matter, and the Youth Supporting Program of Institute of Semiconductors.
Corresponding Authors:  Rui Zhu, Tongbo Wei, Xuedong Bai, Peng Gao     E-mail:  zhurui@pku.edu.cn;tbwei@semi.ac.cn;xdbai@iphy.ac.cn;pgao@pku.edu.cn

Cite this article: 

Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏) Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope 2024 Chin. Phys. B 33 038502

[1] Ponce F A and Bour D P 1997 Nature 386 351
[2] Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nat. Photonics 3 179
[3] Kobayashi Y, Kumakura K, Akasaka T and Makimoto T 2012 Nature 484 223
[4] Guo L, Guo Y, Wang J and Wei T 2021 Journal of Semiconductors 42 081801
[5] Humphreys C J 2008 MRS Bull. 33 459
[6] Schubert E F and Kim J K 2005 Science 308 1274
[7] Sheu J K, Chang S J, Kuo C H, Su Y K, Wu L W, Lin Y C, Lai W C, Tsai J M, Chi G C and Wu R K 2003 IEEE Photonics Technol. Lett. 15 18
[8] Kuo Y, Chang J, Tsai M and Yen S 2009 Appl. Phys. Lett. 95 011116
[9] Rozhansky I V and Zakheim D A 2007 Phys. Stat. Sol. (a) 204 227
[10] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[11] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
[12] Liu M, Yang Y, Xiang P, Chen W, Han X, Lin X, Lin J, Luo H, Liao Q, Zang W, Wu Z, Liu Y and Zhang B 2015 Chin. Phys. B 24 068503
[13] Wael Z T, Gil Y H, Sang W R, June S H and June K L 2016 Optical Materials 55 17
[14] James T G, Zhang S, Bertrand R, Fu W, Bao A, Zhu D, David J, Ashley H, Ian B, David S, Menno J, Colin J H and Rachel A O 2015 Nano Lett. 15 7639
[15] Sung K L, Megan B, Qian F, Li Y, Charles M L and Silvija G 2009 Nano Lett. 9 3940
[16] Peter S, Shawn W and Eli S 2019 Nature 570 354
[17] Michal, V, Daniel K A, Fariah H, Katherine S and Jennifer A D 2018 Nat. Commun. 9 4658
[18] Sheng B, Schmidt G, Bertram F, Veit P, Wang Y, Wang T, Rong X, Chen Z, Wang P, Bläsing J, Miyake H, Li H, Guo S, Qin Z, Strittmatter A, Shen B, Christen J and Wang X 2020 Photonics Research 8 610
[19] Deguchi T, Shikanai A, Torii K, Sota T, Chichibu S and Nakamura S 1998 Appl. Phys. Lett. 72 3329
[20] Cho Y H, Song J J, Keller S, Minsky M S, Hu E, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1128
[21] Rothwarf A 1973 J. Appl. Phys. 44 752
[22] Merano M, Sonderegger S, Crottini A, Collin S, Renucci P, Pelucchi E, Malko A, Baier M H, Kapon E, Deveaud B and Ganiere J D 2005 Nature 438 479
[23] Sonderegger S, Feltin E, Merano M, Crottini A, Carlin J F, Sachot R, Deveaud B, Grandjean N and Ganiere J D 2006 Appl. Phys. Lett. 89 232109
[24] Marcus M, Gordon S, Sebastian M, Peter V, Frank B, Robert A R L, Dominik H, Wang J, Tobias M, Ferdinand S and Jurgen C 1999 Phys. Status Solidi B 253 112
[25] Kuo Y, Liou B, Yen S and Chu H 2004 Opt. Commun. 237 363
[26] Egerton R F 2009 Rep. Prog. Phys. 72 016502
[27] Miller D, Chemla D, Damen T, Gossard A, Wiegmann W, Wood T and Burrus C 1984 Phys. Rev. Lett. 53 2173
[28] Fiorentini V, Bernardini F, Della S F, Di Carlo A and Lugli P 1999 Phys. Rev. B 60 8849
[29] Tetsuya T, Shigetoshi S, Hiromitsu S, Hiroshi A, Isamu A, Yawara K, Shigeru N, Yishifumi Y, Norihide Y 1998 Journal of Crystal Growth 189 616
[30] RouviereJ L and Sarigiannidou E 2005 Ultramicroscopy 106 1
[31] Zhao C W, Xing Y M, Bai P C, Hou J F and Dai X J 2008 Physica B 403 1838
[32] Jayhoon C and Lew R 2008 Ultramicroscopy 108 1595
[33] Anna R, Aleksandra W, Kamil S, Uwe J, Ute Z, Andrian V K, Agnieszka P, Marta S, Kamil K, Zbigniew R Z and Bogdan J K 2016 J. Appl. Phys. 120 194304
[34] Xue H, Pan N, Li M, Wu Y, Wang X and Hou J 2010 Nanotechnology 21 215701
[35] Zhang J, Cai L, Zhang B, Hu X, Jiang F, Yu J and Wang Q 2009 Appl. Phys. Lett. 95 161110
[36] Speck J S and Rosner S J 1999 Physica B 273 24
[37] Yacobi B G and Holt D B 1986 J. Appl. Phys. 59 R1
[38] Agata B, Lucja M, Julita S, Szymon G, Jan W, Dario S and Piotr P 2021 Scientifc Reports 11 21
[39] Barbara B, Frank B, Juergen C, Thomas H, Armin D and Alois K 2009 Appl. Phys. Lett. 95 032106
[40] ShenY C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[41] Mukai T, Yamada M and Nakamura S 1999 Jpn. J. Appl. Phys. 38 3976
[42] Albrecht M, Weyher J L, Lucznik B, Grzegory I and Porowski S 2008 Appl. Phys. Lett. 92 231909
[1] Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2024, 33(3): 037101.
[2] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[3] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[4] First-principles study of non-radiative carrier capture by defects at amorphous-SiO2/Si(100) interface
Haoran Zhu(祝浩然), Weifeng Xie(谢伟锋), Xin Liu(刘欣), Yang Liu(刘杨), Jinli Zhang(张金利), and Xu Zuo(左旭). Chin. Phys. B, 2023, 32(7): 077303.
[5] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[6] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[7] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[8] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[9] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[10] Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process
Wei-Tai Gong(巩伟泰), Yan Li(李闫), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), and Xiao-Jin Li(李小进). Chin. Phys. B, 2023, 32(12): 128502.
[11] Improving efficiency of n-i-p perovskite solar cells enabled by 3-carboxyphenylboronic acid additive
Bin-Jie Li(李斌杰), Jia-Wen Li(李嘉文), Gen-Jie Yang(杨根杰), Meng-Ge Wu(吴梦鸽), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2023, 32(10): 107801.
[12] Proton induced radiation effect of SiC MOSFET under different bias
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Zhi-Feng Lei(雷志锋), Chao Peng(彭超), Wu-Ying Ma(马武英), Di Wang(王迪), Chang-Hao Sun(孙常皓), Feng-Qi Zhang(张凤祁), Zhan-Gang Zhang(张战刚), Ye Yang(杨业), Wei Lv(吕伟), Zhong-Ming Wang(王忠明), Xiang-Li Zhong(钟向丽), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(10): 108503.
[13] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[14] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!