Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097204    DOI: 10.1088/1674-1056/ace426
RAPID COMMUNICATION Prev   Next  

General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents

Sheng-Lian Jiang(蒋盛莲)1, Yanxia Liu(刘彦霞)2,†, and Li-Jun Lang(郎利君)1,3,‡
1 School of Physics, South China Normal University, Guangzhou 510006, China;
2 School of Physics and Astronomy, Yunnan University, Kunming 650091, China;
3 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
Abstract  We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts. This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved. To demonstrate the validity of this mapping, we apply it to two non-Hermitian localization models: an Aubry-André-like model with nonreciprocal hopping and complex quasiperiodic potentials, and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping. We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models. This general mapping may catalyze further studies on mobility edges, Lyapunov exponents, and other significant quantities pertaining to localization in non-Hermitian mosaic models.
Keywords:  non-Hermitian mosaic model      mosaic-to-non-mosaic mapping      mobility edge      Lyapunov exponent  
Received:  17 April 2023      Revised:  25 June 2023      Accepted manuscript online:  05 July 2023
PACS:  72.15.Rn (Localization effects (Anderson or weak localization))  
  72.20.Ee (Mobility edges; hopping transport)  
  73.20.Fz (Weak or Anderson localization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204406), the National Key Research and Development Program of China (Grant No. 2022YFA1405304), and the Guangdong Provincial Key Laboratory (Grant No. 2020B1212060066).
Corresponding Authors:  Yanxia Liu, Li-Jun Lang     E-mail:  yxliu-china@ynu.edu.cn;ljlang@scnu.edu.cn

Cite this article: 

Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君) General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents 2023 Chin. Phys. B 32 097204

[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2] Xu Y, Wang S T and Duan L M 2017 Phys. Rev. Lett. 118 045701
[3] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[4] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[5] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[6] Lee C H and Thomale R 2019 Phys. Rev. B 99 201103
[7] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[8] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2019 Nat. Phys. 16 761
[9] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kieβling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747
[10] Borgnia D, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
[11] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[12] Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R and Szameit A 2020 Science 368 eaaz8727
[13] Longhi S 2020 Phys. Rev. Lett. 124 066602
[14] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[15] Wang K, Dutt A, Yang K Y, Wojcik C C, Vučković J and Fan S 2021 Science 371 1240
[16] Wang K, Li T, Xiao L, Han Y, Yi W and Xue P 2021 Phys. Rev. Lett. 127 270602
[17] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[18] Hatano N and Nelson D R 1998 Phys. Rev. B 58 8384
[19] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[20] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[21] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355
[22] Tzortzakakis A F, Makris K G and Economou E N 2020 Phys. Rev. B 101 014202
[23] Huang Y and Shklovskii B I 2020 Phys. Rev. B 101 014204
[24] Jazaeri A and Satija I I 2001 Phys. Rev. E 63 036222
[25] Yuce C 2014 Phys. Lett. A 378 2024
[26] Zeng Q B, Chen S and Lü R 2017 Phys. Rev. A 95 062118
[27] Jiang H, Lang L J, Yang C, Zhu S L and Chen S 2019 Phys. Rev. B 100 054301
[28] Longhi S 2019 Phys. Rev. B 100 125157
[29] Longhi S 2019 Phys. Rev. Lett. 122 237601
[30] Zeng Q B, Yang Y B and Xu Y 2020 Phys. Rev. B 101 020201
[31] Liu Y, Jiang X P, Cao J and Chen S 2020 Phys. Rev. B 101 174205
[32] Zeng Q B and Xu Y 2020 Phys. Rev. Res. 2 033052
[33] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205
[34] Liu Y, Wang Y, Zheng Z and Chen S 2021 Phys. Rev. B 103 134208
[35] Liu Y, Zhou Q and Chen S 2021 Phys. Rev. B 104 024201
[36] Wang Y, Xia X, Wang Y, Zheng Z and Liu X J 2021 Phys. Rev. B 103 174205
[37] Cai X 2021 Phys. Rev. B 103 014201
[38] Gong L Y, Lu H and Cheng W W 2021 Advanced Theory and Simulations 4 2100135
[39] Liu Y, Wang Y, Liu X J, Zhou Q and Chen S 2021 Phys. Rev. B 103 014203
[40] Dwiputra D and Zen F P 2022 Phys. Rev. B 105 L081110
[41] Aubry S and André G 1980 Proceedings, VIII International Colloquium on Group-Theoretical Methods in Physics 3
[42] Biddle J and Sarma S D 2010 Phys. Rev. Lett. 104 070601
[43] Deng X, Ray S, Sinha S, Shlyapnikov G V and Santos L 2019 Phys. Rev. Lett. 123 025301
[44] Yao H, Khoudli H, Bresque L and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405
[45] Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q and Liu X J 2020 Phys. Rev. Lett. 125 196604
[46] Roy S, Mishra T, Tanatar B and Basu S 2021 Phys. Rev. Lett. 126 106803
[47] Liu T, Xia X, Longhi S and Sanchez-Palencia L 2022 SciPost Phys. 12 027
[48] Avila A 2015 Acta Mathematica 215 1
[49] Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S and Bloch I 2018 Phys. Rev. Lett. 120 160404
[50] An F A, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S and Gadway B 2021 Phys. Rev. Lett. 126 040603
[51] Wang Y, Zhang J H, Li Y, Wu J, Liu W, Mei F, Hu Y, Xiao L, Ma J, Chin C and Jia S 2022 Phys. Rev. Lett. 129 103401
[52] Lin Q, Li T, Xiao L, Wang K, Yi W and Xue P 2022 Phys. Rev. Lett. 129 113601
[53] Luo X, Ohtsuki T and Shindou R 2021 Phys. Rev. Lett. 126 090402
[54] Goblot V, Štrkalj A, Pernet N, Lado J L, Dorow C, Lemaître A, Le Gratiet L, Harouri A, Sagnes I, Ravets S, Amo A, Bloch J and Zilberberg O 2020 Nat. Phys. 16 832
[55] Rousha P, Neill C, Tangpanitanon J, Bastidas V M, Megrant A, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A, Foxen B, Giustina M, Jeffrey E, Kelly J, Lucero E, Mutus J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Neven H, Angelakis D G and Martinis J 2017 Science 358 1175
[56] Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N and Silberberg Y 2009 Phys. Rev. Lett. 103 013901
[57] Ganeshan S, Pixley J H and Das Sarma S 2015 Phys. Rev. Lett. 114 146601
[58] Liu Y 2022 A general approach to the exact localized transition points of 1d mosaic disorder models (Preprint 2208.02762)
[59] Wang Y, Zhang L, Wan Y, He Y and Wang Y 2022 Phys. Rev. B 107 L140201
[60] We use the notion "Lyapunov exponent" because in Hermitian disorder or quasiperiodic systems Lyapunov exponent is just the inverse of the localization length,ucite[64] but how to calculate Lyapunov exponent for nonreciprocal systems using transfer matrix is still an open question.
[61] Jitomirskaya S Y 1999 Annals of Mathematics 150 1159
[62] Avila A, You J and Zhou Q 2017 Duke Mathematical Journal 166 2697
[63] Johnson R A 1986 Journal of Differential Equations 61 54
[64] Carmona R 1982 Duke Math. J. 49 191
[1] Existence of hidden attractors in nonlinear hydro-turbine governing systems and its stability analysis
Peng-Chong Zhao(赵鹏翀), Hao-Juan Wei(卫皓娟), Zhen-Kun Xu(徐振坤), Di-Yi Chen(陈帝伊), Bei-Bei Xu(许贝贝), and Yu-Meng Wang(王雨萌). Chin. Phys. B, 2023, 32(9): 090503.
[2] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[3] Mobility edges in one-dimensional finite-sized models with large quasi-periodic disorders
Qiyun Tang(汤起芸) and Yan He(贺言). Chin. Phys. B, 2023, 32(12): 127202.
[4] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[5] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[6] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[7] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[8] Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒). Chin. Phys. B, 2019, 28(1): 010306.
[9] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[10] Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge
Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新). Chin. Phys. B, 2017, 26(7): 077202.
[11] Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise
You-Ming Lei(雷佑铭), Hong-Xia Zhang(张红霞). Chin. Phys. B, 2017, 26(3): 030502.
[12] Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems
Long-Yan Gong(巩龙延), You-Gen Ding(丁友根), Yong-Qiang Deng(邓永强). Chin. Phys. B, 2017, 26(11): 117201.
[13] A study of the early warning signals of abrupt change in the Pacific decadal oscillation
Wu Hao (吴浩), Hou Wei (侯威), Yan Peng-Cheng (颜鹏程), Zhang Zhi-Sen (张志森), Wang Kuo (王阔). Chin. Phys. B, 2015, 24(8): 089201.
[14] A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection
Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰). Chin. Phys. B, 2015, 24(6): 060504.
[15] A perturbation method to the tent map based on Lyapunov exponent and its application
Cao Lv-Chen (曹绿晨), Luo Yu-Ling (罗玉玲), Qiu Sen-Hui (丘森辉), Liu Jun-Xiu (刘俊秀). Chin. Phys. B, 2015, 24(10): 100501.
No Suggested Reading articles found!