Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127202    DOI: 10.1088/1674-1056/accdc9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mobility edges in one-dimensional finite-sized models with large quasi-periodic disorders

Qiyun Tang(汤起芸) and Yan He(贺言)
College of Physics, Sichuan University, Chengdu 610064, China
Abstract  We study the one-dimensional tight-binding model with quasi-periodic disorders, where the quasi-period is tuned to be large compared to the system size. It is found that this type of model with large quasi-periodic disorders can also support the mobility edges, which is very similar to the models with slowly varying quasi-periodic disorders. The energy-matching method is employed to determine the locations of mobility edges in both types of models. These results of mobility edges are verified by numerical calculations in various examples. We also provide qualitative arguments to support the fact that large quasi-periodic disorders will lead to the existence of mobility edges.
Keywords:  quasi-periodic disorders      mobility edges      Aubry-Andre model  
Received:  07 March 2023      Revised:  13 April 2023      Accepted manuscript online:  18 April 2023
PACS:  72.20.Ee (Mobility edges; hopping transport)  
  71.23.-k (Electronic structure of disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11874272) and Science Specialty Program of Sichuan University (Grant No.2020SCUNL210).
Corresponding Authors:  Yan He     E-mail:  heyan_ctp@scu.edu.cn

Cite this article: 

Qiyun Tang(汤起芸) and Yan He(贺言) Mobility edges in one-dimensional finite-sized models with large quasi-periodic disorders 2023 Chin. Phys. B 32 127202

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Mott N 1887 J. Phys. C: Solid State Phys. 20 3075
[3] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[4] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[5] Aubry S and Andre G 1980 Ann. Israel Phys. Soc. 3 18
[6] Harper P G 1955 Proc. Phys. Soc. A 68 874
[7] Das Sarma S, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144
[8] Das Sarma S, He S and Xie X C 1990 Phys. Rev. B 41 5544
[9] Biddle J and Das Sarma S 2010 Phys. Rev. Lett. 104 070601
[10] Hashimoto Y, Niizeki K and Okabe Y 1992 J. Phys. A: Math. Gen. 25 5211
[11] Boers D J, Goedeke B, Hinrichs D and Holthaus M 2007 Phys. Rev. A 75 063404
[12] Biddle J, Wang B, Priour D J and Das Sarma S 2009 Phys. Rev. A 80 021603
[13] Lellouch S and Sanchez-Palencia L 2014 Phys. Rev. A 90 061602
[14] Biddle J, Priour D J, Wang B and Das Sarma S 2011 Phys. Rev. B 83 075105
[15] Li X P, Pixley J H, Deng D L, Ganeshan S and Das Sarma S 2016 Phys. Rev. B 93 184204
[16] Li X, Li X P and Das Sarma S 2017 Phys. Rev. B 96 085119
[17] Deng X, Ray S, Sinha S, Shlyapnikov G V and Santos L 2019 Phys. Rev. Lett. 123 025301
[18] Saha M, Maiti S K and Purkayastha A 2019 Phys. Rev. B 100 174201
[19] Wang Y C, Xia X, Zhang L, Yao H P, Chen X, You J G, Zhou Q and Liu X J 2020 Phys. Rev. Lett. 125 196604
[20] Luschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S and Bloch I 2018 Phys. Rev. Lett. 120 160404
[21] Zhou L 2021 Phys. Rev. Research 3 033184
[22] Huang K, Vu D, Li X and Das Sarma S 2020 Phys. Rev. Lett. 126 106803
[23] Dwiputra D and Zen F P 2022 Phys. Rev. B 105 L081110
[24] Xu Z, Huangfu H, Zhang Y and Chen S 2022 New J. Phys. 22 013036
[25] Yao H, Giamarchi T and Sanchez-Palencia L 2020 Phys. Rev. Lett. 125 060401
[26] Roy S, Mishra T, Tanatar B and Basu S 2021 Phys. Rev. Lett. 126 106803
[27] Liu T, Xia X, Longhi S and Sanchez-Palencia L 2022 SciPost Phys. 12 027
[28] Goncalves M, Amorim B, Castro E V and Ribeiro P 2022 SciPost Phys. 13 046
[29] Duthie A, Roy S and Logan D E 2021 Phys. Rev. B 103 L060201
[30] Nava A, Campagnano G, Sodano P and Giuliano D 2023 Phys. Rev. B 107 035113
[31] Yuce C and Ramezani H 2022 Phys. Rev. B 106 024202
[32] Liu T and Xia X 2022 Phys. Rev. B 105 054201
[33] Han W and Zhou L 2022 Phys. Rev. B 105 054204
[34] Chen W, Cheng S, Lin J, Asgari R and Gao X 2022 Phys. Rev. B 106 144208
[35] Liu Y, Jiang X P, Cao J and Chen S 2020 Phys. Rev. B 101 174205
[36] Cai X 2021 Phys. Rev. B 103 214202
[37] Longhi S 2019 Phys. Rev. B 100 125157
[38] Tang Q and He Y 2021 J. Phys.: Condens. Matter 33 185505
[39] Thouless D J 1974 Phys. Rep. 13 93
[40] Kohmoto M 1983 Phys. Rev. Lett. 51 1198
[41] Schreiber M 1985 J. Phys. C 18 2493
[42] Borgnia D S and Slager R J 2015 arXiv: 1504.05205
[1] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
No Suggested Reading articles found!