Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 028701    DOI: 10.1088/1674-1056/ad1178
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer

Yao Xu(徐耀)1, Shu-Wei Huang(黄舒伟)1, Hong-Ming Ding(丁泓铭)2,†, and Yu-Qiang Ma(马余强)1
1 National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
Abstract  Recently, lipid nanoparticles (LNPs) have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency, safety, and straightforward production and scalability. However, the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive. In this study, we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer. Our findings revealed that hydrophilic bases, specifically G in single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), displayed a higher propensity to form hydrogen bonds with phospholipid head groups. Notably, ssRNA exhibited stronger binding energy than ssDNA. Furthermore, divalent ions, particularly Ca2+, facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids. Overall, our study provides valuable insights into the molecular mechanisms underlying nucleic acid-phospholipid interactions, with potential implications for the nucleic acids in biotherapies, particularly in the context of lipid carriers.
Keywords:  RNA      DNA      lipid bilayer      molecular dynamics      interface interaction      divalent cation  
Received:  02 October 2023      Revised:  10 November 2023      Accepted manuscript online:  01 December 2023
PACS:  87.14.Cc (Lipids)  
  87.14.G- (Nucleic acids)  
  87.15.ap (Molecular dynamics simulation)  
  87.16.D- (Membranes, bilayers, and vesicles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12222506, 12347102, and 12174184). We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for performing the numerical calculations in this paper on its blade cluster system.
Corresponding Authors:  Hong-Ming Ding     E-mail:  dinghm@suda.edu.cn

Cite this article: 

Yao Xu(徐耀), Shu-Wei Huang(黄舒伟), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强) Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer 2024 Chin. Phys. B 33 028701

[1] Sung Y K and Kim S W 2019 Biomater. Res. 23 8
[2] Anguela X M and High K A 2019 Annu. Rev. Med. 70 273
[3] Angell C, Xie S, Zhang L and Chen Y 2016 Small 12 1117
[4] Guan S and Rosenecker J 2017 Gene. Ther. 24 133
[5] Hajj K A and Whitehead K A 2017 Nat. Rev. Mater. 2 17056
[6] Lostalé-Seijo I and Montenegro J 2018 Nat. Rev. Chem. 2 258
[7] Mo F, Jiang K, Zhao D, Wang Y, Song J and Tan W 2021 Adv. Drug. Deliv. Rev. 168 79
[8] Hu Q, Li H, Wang L, Gu H and Fan C 2018 Chem. Rev. 119 6459
[9] Guan S and Rosenecker J 2017 Gene. Ther. 24 133
[10] Kanasty R, Dorkin J R, Vegas A and Anderson D 2013 Nat. Mater. 12 967
[11] Yin H, Kanasty R L, Eltoukhy A A, Vegas A J, Dorkin J R and Anderson D G 2014 Nat. Rev. Genet. 15 541
[12] Thomas C E, Ehrhardt A and Kay M A 2003 Nat. Rev. Genet. 4 346
[13] Vega-Villa K R, Takemoto J K, Yáñez J A, Remsberg C M, Forrest M L and Davies N M 2008 Adv. Drug. Deliv. Rev. 60 929
[14] Fenton O S, Kauffman K J, McClellan R L, Appel E A, Dorkin J R, Tibbitt M W, Heartlein M W, De Rosa F, Langer R and Anderson D G 2016 Adv. Mater. 28 2939
[15] Geall A J, Verma A, Otten G R, Shaw C A, Hekele A, Banerjee K, Cu Y, Beard C W, Brito L A, Krucker T, O'Hagan D T, Singh M, Mason P W, Valiante N M, Dormitzer P R, Barnett S W, Rappuoli R, Ulmer J B and Mandl C W 2012 Proc. Natl. Acad. Sci. USA 109 14604
[16] Thess A, Grund S, Mui B L, Hope M J, Baumhof P, Fotin-Mleczek M and Schlake T 2015 Mol. Ther. 23 1456
[17] Fenton O S, Kauffman K J, Kaczmarek J C, McClellan R L, Jhunjhunwala S, Tibbitt M W, Zeng M D, Appel E A, Dorkin J R, Mir F F, Yang J H, Oberli M A, Heartlein M W, DeRosa F, Langer R and Anderson D G 2017 Adv. Mater. 29 201606944
[18] Samaridou E, Heyes J and Lutwyche P 2020 Adv. Drug. Deliv. Rev. 154-155 37
[19] Semple S C, Klimuk S K, Harasym T O, Dos Santos N, Ansell S M, Wong K F, Maurer N, Stark H, Cullis P R, Hope M J and Scherrer P 2001 Biochim. Biophys. Acta Biomembr. 1510 152
[20] Tam P, Monck M, Lee D, Ludkovski O, Leng E C, Clow K, Stark H, Scherrer P, Graham R W and Cullis P R 2000 Gene. Ther. 7 1867
[21] Heyes J, Palmer L, Chan K, Giesbrecht C, Jeffs L and MacLachlan I 2007 Mol. Ther. 15 713
[22] Hou X, Zaks T, Langer R and Dong Y 2021 Nat. Rev. Mater. 6 1078
[23] Czerniak T and Saenz J P 2022 Proc. Natl. Acad. Sci. USA 119 e2119235119
[24] Rissanou A N, Ouranidis A and Karatasos K 2020 Soft Matter 16 6993
[25] Cheng X and Lee R J 2016 Adv. Drug. Deliv. Rev. 99 129
[26] Arnott P M, Joshi H, Aksimentiev A and Howorka S 2018 Langmuir 34 15084
[27] Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D and Decuzzi P 2021 Bioeng. Transl. Med. 6 e10213
[28] Ding H, Li J, Chen N, Hu X, Yang X, Guo L, Li Q, Zuo X, Wang L, Ma Y and Fan C 2018 ACS Cent. Sci. 4 1344
[29] Qiang X W, Zhang C, Dong H L, Tian F J, Fu H, Yang Y J, Dai L, Zhang X H and Tan Z J 2022 Phys. Rev. Lett. 128 108103
[30] Xu Y, Huang S W, Ma Y Q and Ding H M 2022 Nanoscale. Adv. 4 754
[31] Chen P, Yue H, Zhai X, Huang Z, Ma G H, Wei W and Yan L T 2019 Sci. Adv. 5 eaaw319
[32] Li X, Zhou S and Lin X 2022 J. Chem. Inf. Model 62 2421
[33] Zou A, Lee S, Li J and Zhou R 2020 J. Phys. Chem. B 124 701
[34] Chen X, Tian F, Li M, Xu H, Cai M, Li Q, Zuo X, Wang H, Shi X, Fan C, Baigude H and Shan Y 2020 Global Chal. 4 1900075
[35] Liu Q, Wang H, Shi X, Wang Z G and Ding B 2017 ACS Nano 11 7251
[36] Lu X J and Olson W K 2003 Nucleic. Acids. Res. 31 5108
[37] Wu E L, Cheng X, Jo S, Rui H, Song K C, Dávila-Contreras E M, Qi Y, Lee J, Monje-Galvan V, Venable R M, Klauda J B and Im W 2014 J. Comput. Chem. 35 1997
[38] Park S, Choi Y K, Kim S, Lee J and Im W 2021 J. Chem. Inf. Model. 61 5192
[39] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindah E 2015 SoftwareX 1-2 19
[40] Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[41] Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E and Simmerling C 2015 J. Chem. Theory. Comput. 11 3696
[42] Ivani I, Dans P D, Noy A, Pérez A, Faustino I, Hospital A, Walther J, Andrio P, Goñi R, Balaceanu A, Portella G, Battistini F, Gelpí J L, González C, Vendruscolo M, Laughton C A, Harris S A, Case D A and Orozco M 2015 Nat. Methods 13 55
[43] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[44] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[45] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[46] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[47] Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684
[48] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[49] Wang C, Greene D, Xiao L, Qi R and Luo R 2018 Front Mol. Biosci. 4 87
[50] Ding H M, Yin Y W, Ni S D, Sheng Y J and Ma Y Q 2021 Chin. Phys. Lett. 38 18701
[51] Chen Y Q, Sheng Y J, Ding H M and Ma Y Q 2022 Chin. Phys. B 31 048701
[52] Yan Z S, Xu Y, Ding H M and Ma Y Q 2022 Chin. Phys. Lett. 39 108701
[53] Baker N A, Sept D, Joseph S, Holst M J and McCammon J A 2001 Proc. Natl. Acad. Sci. USA 98 10037
[54] Elder R M and Jayaraman A 2013 Soft Matter 9 11521
[55] Chen H, Meisburger S P, Pabit S A, Sutton J L, Webb W W and Pollack L 2012 Proc. Natl. Acad. Sci. USA 109 799
[56] Barger J P and Dillon P F 2020 Electrophoresis 41 1170
[57] Mao Y, Du Y, Cang X, Wang J, Chen Z, Yang H and Jiang H 2013 J. Phys. Chem. B 117 850
[58] Abhinav, Jurkiewicz P, Hof M, Allolio C and Sykora J 2022 Biomolecules 12 1894
[59] Tao Z, Yunguang Q, Qichao L, Xi C, Lifen Z, Xin Y, Bo P, Hualiang J and Huaiyu Y 2019 Acta Physico-Chimica Sinica 35 840
[1] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[2] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[3] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene-silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[4] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[5] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[6] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[7] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[8] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[9] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[10] Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2024, 33(3): 037101.
[11] Internal collision double ionization of molecules driven by co-rotating two-color circularly polarized laser pulses
Xue-Feng Li(李雪峰), Yue Qiao(乔月), Dan Wu(吴丹), Rui-Xian Yu(蔚瑞贤), Ji-Gen Chen(陈基根), Jun Wang(王俊), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2024, 33(1): 013302.
[12] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[13] Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[14] Suppression of stimulated Brillouin and Raman scatterings using an alternating frequency laser and transverse magnetic fields
Rui-Jin Cheng(程瑞锦), Xiao-Xun Li(李晓旬), Qing Wang(王清), De-Ji Liu(刘德基), Zhuo-Ming Huang(黄卓明), Shuai-Yu Lv(吕帅宇), Yuan-Zhi Zhou(周远志), Shu-Tong Zhang(张舒童), Xue-Ming Li(李雪铭), Zu-Jie Chen(陈祖杰), Qiang Wang(王强), Zhan-Jun Liu(刘占军), Li-Hua Cao(曹莉华), and Chun-Yang Zheng(郑春阳). Chin. Phys. B, 2024, 33(1): 015206.
[15] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
No Suggested Reading articles found!