Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 028201    DOI: 10.1088/1674-1056/ad1171
Special Issue: SPECIAL TOPIC — Post-Moore era: Materials and device physics
TOPICAL REVIEW—Post-Moore era: Materials and device physics Prev   Next  

The rise of supercapacitor diodes: Current progresses and future challenges

Hongyun Ma(马鸿云)1,2,†, Lingxiao Ma(马凌霄)1, Huasheng Bi(毕华盛)1, and Wei Lan(兰伟)1,‡
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
Abstract  Supercapacitor has been widely known as a representative electrochemical energy storage device with high power density and long lifespan. Recently, with the deeper understanding of its charge storage mechanism, unidirectional-charging supercapacitor, also called supercapacitor diode (CAPode), is successfully developed based on the ion-sieving effect of its working electrode towards electrolyte ions. Because CAPode integrates mobile ion and mobile electron in one hybrid circuit, it has a great potential in the emerging fields of ion/electron coupling logic operations, human-machine interface, neural network interaction, and in vivo diagnosis and treatment. Accordingly, we herein elucidate the working mechanism and design philosophy of CAPode, and summarize the electrode materials that are suitable for constructing CAPode. Meanwhile, some other supercapacitor-based devices beyond CAPode are also introduced, and their potential applications are instructively presented. Finally, we outline the challenges and chances of CAPode-related techniques.
Keywords:  supercapacitor diode      ion-sieving effect      ion/electron coupling circuit      logic operation  
Received:  18 July 2023      Revised:  15 November 2023      Accepted manuscript online:  01 December 2023
PACS:  82.47.Uv (Electrochemical capacitors; supercapacitors)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
  88.80.fh (Supercapacitors)  
  82.45.Fk (Electrodes)  
Fund: We acknowledge the financial support from the China Postdoctoral Science Foundation (Grant Nos. BX20220139 and 2021M701530), the National Natural Science Foundation of China (Grant No. 61874166), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2021-sp50), and the Science and Technology Program of Qinghai Province (Grant No. 2022-ZJ-703).
Corresponding Authors:  Hongyun Ma, Wei Lan     E-mail:  mhy@lzu.edu.cn;lanw@lzu.edu.cn

Cite this article: 

Hongyun Ma(马鸿云), Lingxiao Ma(马凌霄), Huasheng Bi(毕华盛), and Wei Lan(兰伟) The rise of supercapacitor diodes: Current progresses and future challenges 2024 Chin. Phys. B 33 028201

[1] Zhang E, Fulik N, Hao G P, Zhang H Y, Kaneko K, Borchardt L, Brunner E and Kaskel S 2019 Angew. Chem. Int. Ed. 58 13060
[2] Ma H, Liang J, Qiu J, Jiang L, Ma L, Sheng H, Shao M, Wang Q, Li F, Fu Y, Wang J, Xie E, Chai Y and Lan W 2023 Adv. Mater. 35 2301218
[3] Zhang E, Galle L, Lochmann S, Grothe J and Kaskel S 2021 Chem. Eng. J. 420 130431
[4] Hou Y Q and Hou X 2021 Science 373 628
[5] Kim Y, Chortos A, Xu W T, Liu Y X, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C X, Lee Y, Niu S M, Liu J, Pfattner R, Bao Z N and Lee T W 2018 Science 360 998
[6] Wan C J, Xiao K, Angelin A, Antonietti M and Chen X D 2019 Adv. Intell. Syst. 1 1900073
[7] Xiao K, Wan C J, Jiang L, Chen X D and Antonietti M 2020 Adv. Mater. 32 2000218
[8] Yang C H and Suo Z G 2018 Nat. Rev. Mater. 3 125
[9] Bisri S Z, Shimizu S, Nakano M and Iwasa Y 2017 Adv. Mater. 29 1607054
[10] Miller J R, Outlaw R A and Holloway B C 2010 Science 329 1637
[11] Jana S K, Banerjee S, Bayan S, Inta H R and Mahalingam V 2018 J. Phys. Chem. C 122 11378
[12] Kim H J, Chen B, Suo Z and Hayward R C 2020 Science 367 773
[13] Feng X, Zhao X, Yang L, Li M, Qie F, Guo J, Zhang Y, Li T, Yuan W and Yan Y 2018 Nat. Commun. 9 3750
[14] Feng J Z, Wang Y, Xu Y T, Ma H Y, Wang G W, Ma P J, Tang Y and Yan X B 2021 Adv. Mater. 33 2100887
[15] Tang P, Tan W, Li F, Xue S, Ma Y, Jing P, Liu Y, Zhu J and Yan X 2023 Adv. Mater. 35 2209186
[16] Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruna H D, Simon P and Dunn B 2013 Nat. Mater. 12 518
[17] Brezesinski T, Wang J, Tolbert S H and Dunn B 2010 Nat. Mater. 9 146
[18] Chen C J, Wen Y W, Hu X L, Ji X L, Yan M Y, Mai L Q, Hu P, Shan B and Huang Y H 2015 Nat. Commun. 6 6929
[19] Wang S, Xu H B, Zhao J P and Li Y 2022 Inorg. Chem. Front. 9 514
[20] Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q and Zhang H 2015 Adv. Mater. 27 4695
[21] Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y and Zhu K 2011 Chem. Commun. 47 10058
[22] Hu X, Zhang W, Liu X, Mei Y and Huang Y 2015 Chem. Soc. Rev. 44 2376
[23] Kim H S, Cook J B, Lin H, Ko J S, Tolbert S H, Ozolins V and Dunn B 2017 Nat. Mater. 16 454
[24] Yang J, Xiao X, Chen P, Zhu K, Cheng K, Ye K, Wang G, Cao D and Yan J 2019 Nano Energy 58 455
[25] Wang Z, Si Y, Zhao C, Yu D, Wang W and Sun G 2019 ACS Appl. Mater. Interfaces 11 27200
[26] Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J.-P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R and Armand M 2013 Nat. Mater. 12 452
[27] Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A and Ruoff R S 2011 Science 332 1537
[28] El-Kady M F, Strong V, Dubin S and Kaner R B 2012 Science 335 1326
[29] Liu C, Yu Z, Neff D, Zhamu A and Jang B Z 2010 Nano Lett. 10 4863
[30] Sun Y, Wu Q and Shi G 2011 Energy Environ. Sci. 4 1113
[31] Xu Y, Sheng K, Li C and Shi G 2010 ACS Nano 4 4324
[32] Pang J, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z and Rummeli M H 2019 Chem. Soc. Rev. 48 72
[33] Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y and Barsoum M W 2014 Nature 516 78
[34] Lukatskaya M R, Kota S, Lin Z, Zhao M Q, Shpigel N, Levi M D, Halim J, Taberna P L, Barsoum M, Simon P and Gogotsi Y 2017 Nat. Energy 2 17105
[35] Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W and Gogotsi Y 2013 Science 341 1502
[36] Acerce M, Voiry D and Chhowalla M 2015 Nat. Nanotechnol. 10 313
[37] Zhou J, Qin J, Zhang X, Shi C, Liu E, Li J, Zhao N and He C 2015 ACS Nano 9 3837
[38] Zhang G, Liu H, Qu J and Li J 2016 Energy Environ. Sci. 9 1190
[39] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[40] Cao L, Yang S, Gao W, Liu Z, Gong Y, Ma L, Shi G, Lei S, Zhang Y, Zhang S, Vajtai R and Ajayan P M 2013 Small 9 2905
[41] Yan J, Ren C E, Maleski K, Hatter C B, Anasori B, Urbankowski P, Sarycheva A and Gogotsi Y 2017 Adv. Funct. Mater. 27 1701264
[42] Li C and Shi G 2012 Nanoscale 4 5549
[43] Yang X, Cheng C, Wang Y, Qiu L and Li D 2013 Science 341 534
[44] Xia Y, Mathis T S, Zhao M Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y and Yang S 2018 Nature 557 409
[45] Li K, Liang M, Wang H, Wang X, Huang Y, Coelho J, Pinilla S, Zhang Y, Qi F, Nicolosi V and Xu Y 2020 Adv. Funct. Mater. 30 2000842
[46] Zhong C, Deng Y, Hu W, Qiao J, Zhang L and Zhang J 2015 Chem. Soc. Rev. 44 7484
[47] Beguin F, Presser V, Balducci A and Frackowiak E 2014 Adv. Mater. 26 2219
[48] Simon P and Gogotsi Y 2013 Acc. Chem. Res. 46 1094
[49] Biswas S and Chowdhury A 2023 ChemPhysChem 24 e202200567
[50] Jangu C and Long T E 2014 Polymer 55 3298
[51] Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X and Zhi C 2015 Nat. Commun. 6 10310
[52] Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X and Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344
[53] Ivanov A S, Pershina L V, Nikolaev K G and Skorb E V 2021 Macromol. Biosci. 21 2100117
[54] Ajjan F N, Ambrogi M, Tiruye G A, Cordella D, Fernandes A M, Grygiel K, Isik M, Patil N, Porcarelli L, Rocasalbas G, Vendramientto G, Zeglio E, Antonietti M, Detrembleur C, Inganas O, Jerome C, Marcilla R, Mecerreyes D, Moreno M, Taton D, Solin N and Yuan J 2017 Polym. Int. 66 1119
[55] Ngai K S, Ramesh S, Ramesh K and Juan J C 2016 Ionics 22 1259
[56] Lochmann S, Braeuniger Y, Gottsmann V, Galle L, Grothe J and Kaskel S 2020 Adv. Funct. Mater. 30 1910439
[57] Braeuniger Y, Lochmann S, Gellrich C, Galle L, Grothe J and Kaskel S 2022 Energy Technol. 10 2101153
[58] Ma H, Chen H, Wu M, Chi F, Liu F, Bai J, Cheng H, Li C and Qu L 2020 Angew. Chem. Int. Ed. 59 14541
[59] Xu Y, Lin Z, Zhong X, Huang X, Weiss N O, Huang Y and Duan X 2014 Nat. Commun. 5 4554
[60] Zhang D, Yang B, She W, Gao S, Wang J, Wang Y, Wang K, Li H and Han L 2021 J. Power Sources 506 230103
[61] Ma H, Geng H, Yao B, Wu M, Li C, Zhang M, Chi F and Qu L 2019 ACS Nano 13 9161
[62] Chen Y, Qing L, Liu T, Zhao S and Han Y 2022 Nano Energy 102 107660
[63] Gao Y, Zhang J, Luo X, Wan Y, Zhao Z, Han X and Xia Z 2020 Nano Energy 72 104666
[64] Wang J, Dong S, Ding B, Wang Y, Hao X, Dou H, Xia Y and Zhang X 2017 Natl. Sci. Rev. 4 71
[65] Ma H, Chen H, Hu Y, Yang B, Feng J, Xu Y, Sun Y, Cheng H, Li C, Yan X and Qu L 2022 Energy Environ. Sci. 15 1131
[66] Yang J Q, Wang R, Ren Y, Mao J Y, Wang Z P, Zhou Y and Han S T 2020 Adv. Mater. 32 2003610
[67] Liao X, Song W, Zhang X, Yan C, Li T, Ren H, Liu C, Wang Y and Zheng Y 2020 Nat. Commun. 11 268
[68] Wang M, Xu P and Lei B 2023 Bioact. Mater. 19 511
[69] Katayama S and Nakamura S 2019 Int. J. Food Sci. Tech. 54 1949
[70] Yu L, Tao J, Zhao Q, Xu C and Zhang Q 2020 J. Integr. Neurosci. 19 373
[71] Kaneko K 2021 Peptides 144 170608
[72] Li P, Braeuniger Y, Kunigkeit J, Zhou H, Vega M R O, Zhang E, Grothe J, Brunner E and Kaskel S 2022 Angew. Chem. Int. Ed. 61 e202212250
[73] Sanchez-Paniagua Lopez M, Hervas Perez J P, Lopez-Cabarcos E and Lopez-Ruiz R 2007 Electroanalysis 19 370
[74] Rahimi P and Joseph Y 2019 Trac-Trend. Anal. Chem. 110 367
[75] Yuk H, Lu B Y and Zhao X H 2019 Chem. Soc. Rev. 48 1642
[76] Cai P Q, Zhang X Q, Wang M, Wu Y L and Chen X D 2018 ACS Nano 12 5078
[77] Simon D T, Gabrielsson E O, Tybrandt K and Berggren M 2016 Chem. Rev. 116 13009
[78] Hao Y, Xiang S, Han G, Zhang J, Ma X, Zhu Z, Guo X, Zhang Y, Han Y, Song Z, Liu Y, Yang L, Zhou H, Shi J, Zhang W, Xu M, Zhao W, Pan B, Huang Y, Liu Q, Cai Y, Zhu J, Ou X, You T, Wu H, Gao B, Zhang Z, Guo G, Chen Y, Liu Y, Chen X, Xue C, Wang X, Zhao L, Zou X, Yan L and Li M 2021 Sci. China Inform. Sci. 64 201401
[79] Li M 2012 Sci. China Phys. Mech. 55 2316
[80] Moss D J, Morandotti R, Gaeta A L and Lipson M 2013 Nat. Photonics 7 597
[81] Liu X and Hersam M C 2019 Nat. Rev. Mater. 4 669
[82] Gehring P, Thijssen J M and van der Zant H S J 2019 Nat. Rev. Phys. 1 381
[83] Wendin G 2017 Rep. Prog. Phys. 80 106001
[84] Farahani R D, Dube M and Therriault D 2016 Adv. Mater. 28 5794
[85] Pradhan T, Jung H S, Jang J H, Kim T W, Kang C and Kim J S 2014 Chem. Soc. Rev. 43 4684
[86] Egorova K S, Gordeev E G and Ananikov V P 2017 Chem. Rev. 117 7132
[87] Kim M K, Park Y, Kim I J and Lee J S 2020 iScience 23 101846
[88] Wang Z, Joshi S, Savel'ev S, Song W, Midya R, Li Y, Rao M, Yan P, Asapu S, Zhuo Y, Jiang H, Lin P, Li C, Yoon J H, Upadhyay N K, Zhang J, Hu M, Strachan J P, Barnell M, Wu Q, Wu H, Williams R S, Xia Q and Yang J J 2018 Nat. Electron. 1 137
[89] Willett F R, Avansino D T, Hochberg L R, Henderson J M and Shenoy K V 2021 Nature 593 249
[90] Flesher S N, Downey J E, Weiss J M, Hughes C L, Herrera A J, Tyler-Kabara E C, Boninger M L, Collinger J L and Gaunt R A 2021 Science 372 831
[91] Zhao X, Yang L, Guo J, Xiao T, Zhou Y, Zhang Y, Tu B, Li T, Grzybowski B A and Yan Y 2021 Nat. Electron. 4 109
[92] Yang Z, Zhuang Q, Yan Y, Ahumada G and Grzybowski B A 2021 J. Am. Chem. Soc. 143 16908
[93] Dong Q, Jiang J, Wang Y and Zhai J 2021 ACS Nano 15 19266
[1] All-optical NOT and XOR logic operation at 2.5 Gb/s based on semiconductor optical amplifier loop mirror
Wang Ying (王颖), Zhang Xin-Liang (张新亮), Huang De-Xiu (黄德修). Chin. Phys. B, 2004, 13(6): 882-886.
No Suggested Reading articles found!