PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Suppression of stimulated Brillouin and Raman scatterings using an alternating frequency laser and transverse magnetic fields |
Rui-Jin Cheng(程瑞锦)1, Xiao-Xun Li(李晓旬)1, Qing Wang(王清)1, De-Ji Liu(刘德基)1, Zhuo-Ming Huang(黄卓明)1, Shuai-Yu Lv(吕帅宇)1, Yuan-Zhi Zhou(周远志)2, Shu-Tong Zhang(张舒童)2, Xue-Ming Li(李雪铭)1, Zu-Jie Chen(陈祖杰)2, Qiang Wang(王强)1, Zhan-Jun Liu(刘占军)1,3, Li-Hua Cao(曹莉华)1,3, and Chun-Yang Zheng(郑春阳)1,3,† |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; 2 HEDPS, Center for Applied Physics and Technology, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China; 3 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China |
|
|
Abstract A novel scheme to suppress both stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) by combining an alternating frequency (AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves (EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
|
Received: 20 August 2023
Revised: 17 October 2023
Accepted manuscript online: 26 October 2023
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
52.38.Bv
|
(Rayleigh scattering; stimulated Brillouin and Raman scattering)
|
|
52.57.-z
|
(Laser inertial confinement)
|
|
52.65.-y
|
(Plasma simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975059 and 12005021). |
Corresponding Authors:
Chun-Yang Zheng
E-mail: zhengcy@iapcm.ac.cn
|
Cite this article:
Rui-Jin Cheng(程瑞锦), Xiao-Xun Li(李晓旬), Qing Wang(王清), De-Ji Liu(刘德基), Zhuo-Ming Huang(黄卓明), Shuai-Yu Lv(吕帅宇), Yuan-Zhi Zhou(周远志), Shu-Tong Zhang(张舒童), Xue-Ming Li(李雪铭), Zu-Jie Chen(陈祖杰), Qiang Wang(王强), Zhan-Jun Liu(刘占军), Li-Hua Cao(曹莉华), and Chun-Yang Zheng(郑春阳) Suppression of stimulated Brillouin and Raman scatterings using an alternating frequency laser and transverse magnetic fields 2024 Chin. Phys. B 33 015206
|
[1] He X T, Li J W, Fan Z F, Wang L F, Liu J, Lan K, Wu J F and Ye W H 2016 Phys. Plasmas 23 082706 [2] Hinkel D E, Rosen M D, Williams E A, Langdon A B, Still C H, Callahan D A, Moody J D, Michel P A, Town R P J, London R A and Langer S H 2011 Phys. Plasmas 18 056312 [3] Tikhonchuk V T, Gong T and Jourdain N, et al. 2021 Matter Radiat. Extremes 6 025902 [4] Liu Z J, Wang Q, Li B, Li J W, Cao L H, Zheng C Y and He X T 2022 Plasma Phys. Control. Fusion 64 035002 [5] Kruer W L 1988 The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Company) [6] Dewald E L, Hartemann F, Michel P, et al. 2016 Phys. Rev. Lett. 116 075003 [7] Hinkel D E, Edwards M J and Amendt P A, et al. 2013 Plasma Phys. Control. Fusion 55 124015 [8] Feng Q S, Zheng C Y, Liu Z J, Cao L H, Wang Q, Xiao C Z and He X T 2019 Phys. Plasmas 26 052101 [9] Froula D H, Divol L, London R A, Berger R L, Döppner T, Meezan N B, Ross J S, Suter L J, Sorce C and Glenzer S H 2009 Phys. Rev. Lett. 103 045006 [10] Stamper J A, Papadopoulos K, Sudan R N, Dean S O, McLean E A and Dawson J M 1971 Phys. Rev. Lett. 26 1012 [11] Farmer W A, Koning J M, Strozzi D J, Hinkel D E, Berzak Hopkins L F, Jones O S and Rosen M D 2017 Phys. Plasmas 24 052703 [12] Zhou Y Z, Zheng C Y, Liu Z J and Cao L H 2022 Plasma Phys. Control. Fusion 64 045009 [13] Montgomery D S, Albright B J, Barnak D H, Chang P Y, Davies J R, Fiksel G, Froula D H, Kline J L, MacDonald M J, Sefkow A B, Yin L and Betti R 2015 Phys. Plasmas 22 010703 [14] Li X X, Cheng R J, Wang Qing, Liu D J, Lv S Y, Huang Z M, Zhang S T, Li X M, Chen Z J, Wang Qiang, Liu Z J, Cao L H, Zheng C Y and He X T 2023 Phys. Rev. E 108 L053201 [15] Liu Z J, Li B, Xiang J, Cao L H, Zheng C Y and Hao L 2018 Plasma Phys. Control. Fusion 60 045008 [16] Pan K Q, Guo L, Li Z C, Yang D, Li S W, Jiang S E, Zhang B H, Zheng C Y and He X T 2019 Phys. Plasmas 26 012108 [17] Winjum B J, Tsung F S and Mori W B 2018 Phys. Rev. E 98 043208 [18] Bailly-Grandvaux M, Winjum B J, Manuel M J E, Bolaños S, Walsh C A, Saret J, Bogale J, Strehlow J, Lee R, Tsung F, Mori W, Froula D H, Filkins T and Beg F N 2023 J. Plasma Phys. 89 175890201 [19] Zhou Y Z, Zheng C Y, Liu Z J and Cao L H 2021 Plasma Phys. Control. Fusion 63 055015 [20] Shi Y, Qin Hong and Fisch N J 2018 Phys. Plasmas 25 055706 [21] Edwards M R, Shi Y, Mikhailova J M and Fisch N J 2019 Phys. Rev. Lett. 123 025001 [22] Moody J D, MacGowan B J, Rothenberg J E, Berger R L, Divol L, Glenzer S H, Kirkwood R K, Williams E A and Young P E 2001 Phys. Rev. Lett. 86 2810 [23] Dixit S N, Feit M D, Perry M D and Powell H T 1996 Opt. Lett. 21 001715 [24] Zhang R, Jia H T, Tian X C, Yuan H Y, Na Z, Su J Q, Hu D X, Zhu Q H and Zheng W G 2016 Opt. Lasers Eng. 85 38 [25] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S and Soures J M 1989 J. Appl. Phys. 66 3456 [26] Lefebvre E, Berger R L, Langdon A B, MacGowan B J, Rothenberg J E and Williams E A 1998 Phys. Plasmas 5 2701 [27] Moody J D, MacGowan B J, Rothenberg J E, Berger R J, Divol L, Glenzer S H, Kirkwood R K, Williams E A and Young P E 2001 Phys. Rev. Lett. 86 2810 [28] Mounaix Ph, Divol L, Hüller S and Tikhonchuk V T 2000 Phys. Rev. Lett. 85 4526 [29] Ma H H, Li X F, Weng S M, Yew S H, Kawata S, Gibbon P, Sheng Z M and Zhang J 2021 Matter Radiat. Extremes 6 055902 [30] Follett R K, Shaw J G, Myatt J F, Wen H, Froula D H and Palastro J P 2021 Phys. Plasmas 28 032103 [31] Zhao Y, Weng S M, Chen M, Zheng J, Zhuo H B, Ren C, Sheng Z M and Zhang J 2017 Phys. Plasmas 24 112102 [32] Luo M F, Hüller S, Chen M and Sheng Z M 2022 Phys. Plasmas 29 032102 [33] Liu Z J, Chen Y H, Zheng C Y, Cao L H, Li B, Xiang J, Hao L and Lan K 2017 Phys. Plasmas 24 082704 [34] Feng Q S, Liu Z J, Cao L H, Xiao C Z, Hao L, Zheng C Y, Ning C and He X T 2020 Nucl. Fusion 60 066012 [35] Wang Q, Li Z C and Liu Z J, et al. 2023 Matter Radiat. Extremes 8 055602 [36] Albright B J, Yin L and Afeyan B 2014 Phys. Rev. Lett. 113 045002 [37] Afeyan B and Hüller S 2013 Eur. Phys. J. Web Conf. 59 05009 [38] Hüller S and Afeyan B 2013 Eur. Phys. J. Web Conf. 59 05010 [39] Yin L, Albright B J, Rose H A, Montgomery D S, Kline J L, Kirkwood R K, Milovich J, Finnegan S M, Bergen B and Bowers K J 2014 Phys. Plasmas 21 092707 [40] Barth I and Fisch N J 2016 Phys. Plasmas 23 102106 [41] Zhou H Y, Xiao C Z, Jiao J L, Lang Y, Zhao N, Xie D, Zou D B, Yin Y, Shao F Q and Zhuo H B 2019 Plasma Phys. Control. Fusion 61 105004 [42] Ban S S, Wang Q, Liu Z J, Zheng C Y and He X T 2020 Chin. Phys. B 29 095202 [43] Liu Z J, Zheng C Y, Cao L H, Li B, Xiang J and Hao L 2017 Phys. Plasmas 24 032701 [44] Liu Z J, Wang Q, Zhang W S, Li B, Li P, Zheng W G, Li X, Li J W, Cao L H, Zheng C Y, Ding Y K and He X T 2023 Phys. Plasmas 30 032703 [45] Yang T, Zhang S T, Zhou Y Z, Liu D J, Li X M, Liu Z J, Cao L H, Zheng C Y and He X T 2021 Phys. Scr. 96 125634 [46] Zhang H C, Xiao C Z, Wang Q, Feng Q S, Liu Z J and Zhen C Y 2017 Phys. Plasmas 24 032118 [47] Klimo O, Weber S, Tikhonchuk V T and Limpouch J 2010 Plasma Phys. Control. Fusion 52 055013 [48] Liu Z, Ma H H, Wang W, Li X F, Wang P P, Wang C, Yew S H, Weng S M, Sheng Z M and Zhang J 2023 Nucl. Fusion 63 126010 [49] Fernández J C, Cobble J A, Failor B H, DuBois D F, Montgomery D S, Rose H A, Vu H X, Wilde B H, Wilke M D and Chrien R E 1996 Phys. Rev. Lett. 77 2702 [50] Kirkwood R K, MacGowan B J, Montgomery D S, Afeyan B B, Kruer W L, Moody J D, Estabrook K G, Back C A, Glenzer S H, Blain M A, Williams E A, Berger R L and Lasinski B F 1996 Phys. Rev. Lett. 77 2706 [51] Shekhanov S A and Tikhonchuk V T 2021 Plasma Phys. Control. Fusion 63 115016 [52] Li Y, Wang S W, Xu J Q and Tang Y L 2015 Opt. Express 23 029484 [53] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R and Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001 [54] Dawson J M, Decyk V K, Huff R W, Jechart I, Katsouieas T, Leboeuf J N, Lembege B, Martinez R M, Ohsawa Y and Ratliff S T 1983 Phys. Rev. Lett. 50 1455 [55] Katsouleas T and Dawson J M 1983 Phys. Rev. Lett. 51 392 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|