Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024202    DOI: 10.1088/1674-1056/ad0772
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of tightly linked dual ring antenna and imaging of magnetic field distribution using a diamond fiber probe

Qing-Yun Ye(叶青云)1, Ya-Wen Xue(薛雅文)2, Fei-Yue He(何飞越)1, Xu-Tong Zhao(赵旭彤)1, Yu-Chen Bian(卞雨辰)1, Wen-Tao Lu(卢文韬)1, Jin-Xu Wang(王金旭)1, Hong-Hao Chen(陈鸿浩)1, Sheng-Kai Xia(夏圣开)3, Ming-Jing Zeng(曾明菁)4, and Guan-Xiang Du(杜关祥)1,†
1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
4 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  A tightly linked dual ring antenna is designed, and it is specifically tailored for uniformly coupling the microwave magnetic field to the nitrogen-vacancy (NV) center. The designed antenna operates at a center frequency of about 2.87 GHz, with a bandwidth of around 200 MHz, allowing it to address multiple resonance peaks in the optically detected magnetic resonance (ODMR) spectrum in an external magnetic field. Moreover, the antenna generates a fairly uniform magnetic field in a range with a radius of 0.75 mm. High resolution imaging of the magnetic field distribution on the surface of the antenna is conducted by using a fiber diamond probe. We also investigate the effect of magnetic field uniformity on the linewidth of ODMR, so as to provide insights into reducing the inhomogeneous broadening of ODMR.
Keywords:  nitrogen vacancy (NV)      microwave (MW) imaging      inhomogeneous broadening  
Received:  30 May 2023      Revised:  26 October 2023      Accepted manuscript online:  27 October 2023
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600) and the Shanghai Aerospace Science and Technology Innovation Fund (Grant No. SAST-2022-102).
Corresponding Authors:  Guan-Xiang Du     E-mail:  duguanxiang@njupt.edu.cn

Cite this article: 

Qing-Yun Ye(叶青云), Ya-Wen Xue(薛雅文), Fei-Yue He(何飞越), Xu-Tong Zhao(赵旭彤), Yu-Chen Bian(卞雨辰), Wen-Tao Lu(卢文韬), Jin-Xu Wang(王金旭), Hong-Hao Chen(陈鸿浩), Sheng-Kai Xia(夏圣开), Ming-Jing Zeng(曾明菁), and Guan-Xiang Du(杜关祥) Design of tightly linked dual ring antenna and imaging of magnetic field distribution using a diamond fiber probe 2024 Chin. Phys. B 33 024202

[1] Jelezko F and Wrachtrup J 2006 Physica Status Solidi (a) 203 3207
[2] Matsuzaki Y, Morishita H, Shimooka T, et al. 2016 J. Phys. 28 275302
[3] Chernobrod B M and Berman G P 2005 J. Appl. Phys. 97 014903
[4] Balasubramanian G, Neumann P, Twitchen D, et al. 2009 Nat. Mater. 8 383
[5] Rondin L, Tetienne J P, Hingant T, et al. 2014 Rep. Prog. Phys. 77 056503
[6] Taylor J M, Cappellaro P, Childress L, et al. 2008 Nat. Phys. 4 810
[7] Maze J R, Stanwix P L, Hodges J S, et al. 2008 Nature 455 644
[8] Yang B, Dong Y, Hu Z Z, et al. 2018 IEEE Trans. Microwave Theory and Techniques 66 2276
[9] Bayat K, Choy J, Farrokh Baroughi M, et al. 2014 Nano Lett. 14 1208
[10] Sasaki K, Monnai Y, Saijo S, et al. 2016 Rev. Sci. Instrum. 87 053904
[11] Zhang N, Zhang C, Xu L, et al. 2016 Appl. Magn. Reson. 47 589
[12] Baena J D, Marqués R, Medina F, et al. 2004 Phys. Rev. B 69 014402
[13] Shamonin M, Shamonina E, Kalinin V, et al. 2004 J. Appl. Phys. 95 3778
[14] Sauviac B, Simovski C R and Tretyakov S A 2004 Electromagnetics 24 317
[15] McGuinness L P, Yan Y, Stacey A, et al. 2011 Nat. Nanotechnol. 6 358
[16] Doherty M W, Manson N B, Delaney P, et al. 2013 Phys. Rep. 528 1
[17] Doherty M W, Dolde F, Fedder H, et al. 2012 Phys. Rev. B 85 205203
[18] Xu Q, Zhan J, Jiang H, et al. 2022 International Journal of RF and Microwave Computer-Aided Engineering 32 e23499
[19] Fukui T, Doi Y, Miyazaki T, et al. 2014 Appl. Phys. Express 7 055201
[20] Dong M M, Hu Z Z, Liu Y, et al. 2018 Appl. Phys. Lett. 113
[21] Glenn D R, Fu R R, Kehayias P, et al. 2017 Geochemistry, Geophysics, Geosystems 18 3254
[22] Levine E V, Turner M J, Kehayias P, et al. 2019 Nanophotonics 8 1945
[23] Horsley A, Appel P, Wolters J, et al. 2018 Phys. Rev. Appl. 10 044039
[24] Appel P, Ganzhorn M, Neu E, et al. 2015 New J. Phys. 17 112001
[25] Barry J F, Schloss J M, Bauch E, et al. 2020 Rev. Mod. Phys. 92 015004
[26] Hayashi K, Matsuzaki Y, Taniguchi T, et al. 2018 Phys. Rev. Appl. 10 034009
[27] Rosenzweig Y, Schlussel Y and Folman R 2018 Phys. Rev. B 98 014112
[28] Affolderbach C, Du G X, Bandi T, et al. 2015 IEEE Transactions on Instrumentation and Measurement 64 3629
[1] Versatile and controlled quantum teleportation network
Yao-Yao Zhou(周瑶瑶), Peng-Xian Mei(梅鹏娴), Yan-Hong Liu(刘艳红), Liang Wu(吴量), Yan-Xiang Li(李雁翔), Zhi-Hui Yan(闫智辉), and Xiao-Jun Jia(贾晓军). Chin. Phys. B, 2024, 33(3): 034209.
[2] Engineering the spectra of photon triplets generated from micro/nanofiber
Chuan Qu(瞿川), Dongqin Guo(郭东琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(刘振旗), Yi Zhao(赵义), Shenghai Zhang(张胜海), and Zhengtong Wei(卫正统). Chin. Phys. B, 2024, 33(3): 034208.
[3] Digital holographic imaging via direct quantum wavefunction reconstruction
Meng-Jun Hu(胡孟军) and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2023, 32(10): 100312.
[4] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[5] Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海). Chin. Phys. B, 2023, 32(6): 064202.
[6] Enhanced phase sensitive amplification towards improving noise immunity
Hui Guo(郭辉), Zhi Li(李治), Hengxin Sun(孙恒信), Kui Liu(刘奎), and Jiangrui Gao(郜江瑞). Chin. Phys. B, 2023, 32(5): 054204.
[7] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[8] A novel demodulation method for transmission using nitrogen-vacancy-based solid-state quantum sensor
Ruixin Bai(白瑞昕), Xinyue Zhu(朱欣岳), Fan Yang(杨帆), Tianran Gao(高天然), Ziran Wang(汪子然), Linyan Yu(虞林嫣), Jinfeng Wang(汪晋锋), Li Zhou(周力), and Guanxiang Du(杜关祥). Chin. Phys. B, 2022, 31(7): 074203.
[9] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[10] Widely tunable single-photon source with high spectral-purity from telecom wavelength to mid-infrared wavelength based on MgO:PPLN
Chang-Wei Sun(孙昌伟), Yu Sun(孙宇), Jia-Chen Duan(端家晨), Guang-Tai Xue(薛广太), Yi-Chen Liu(刘奕辰), Liang-Liang Lu(陆亮亮), Qun-Yong Zhang(张群永), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2021, 30(10): 100312.
[11] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[12] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[13] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[14] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[15] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
No Suggested Reading articles found!