|
|
Widely tunable single-photon source with high spectral-purity from telecom wavelength to mid-infrared wavelength based on MgO:PPLN |
Chang-Wei Sun(孙昌伟)1, Yu Sun(孙宇)1, Jia-Chen Duan(端家晨)1, Guang-Tai Xue(薛广太)1, Yi-Chen Liu(刘奕辰)1, Liang-Liang Lu(陆亮亮)1,2, Qun-Yong Zhang(张群永)3, Yan-Xiao Gong(龚彦晓)1, Ping Xu(徐平)1,†, and Shi-Ning Zhu(祝世宁)1 |
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China; 2 Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China; 3 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China |
|
|
Abstract By utilizing the extended phase-matching (EPM) method, we investigate the generation of single photons with high spectral-purity in a magnesium-doped periodically-poled lithium niobate (MgO:PPLN) crystal via the spontaneous parametric down-conversion (SPDC) process. By adjusting the temperature and pump wavelength, the wavelength of the single photons can be tuned from telecom to mid-infrared (MIR) wavelengths, for which the spectral-purity can be above 0.95 with high transmission filters. In experiments, we engineer a MgO:PPLN with poling period of 20.35 μ which emits the EPM photon pair centered at 1496.6 nm and 1644.0 nm and carry out the joint spectral intensity (JSI) and Glauber's second-order self-correlation measurements to characterize the spectral purity. The results are in good agreement with the numerical simulations. Our work may provide a valuable approach for the generation of spectrally pure single photons at a wide range of wavelengths which is competent for various photonic quantum technologies.
|
Received: 10 August 2021
Revised: 18 August 2021
Accepted manuscript online: 25 August 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0303700 and 2019YFA0308700) and the National Natural Science Foundation of China (Grant Nos. 11627810 and 11690031). |
Corresponding Authors:
Ping Xu
E-mail: pingxu520@nju.edu.cn
|
Cite this article:
Chang-Wei Sun(孙昌伟), Yu Sun(孙宇), Jia-Chen Duan(端家晨), Guang-Tai Xue(薛广太), Yi-Chen Liu(刘奕辰), Liang-Liang Lu(陆亮亮), Qun-Yong Zhang(张群永), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁) Widely tunable single-photon source with high spectral-purity from telecom wavelength to mid-infrared wavelength based on MgO:PPLN 2021 Chin. Phys. B 30 100312
|
[1] Daniel G and Isaac L C 1999 Nature 402 390 [2] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46 [3] Alberto P, Jonathan C F M and Jeremy L O B 2009 Science 325 1221 [4] Jacob M, Nicholas C H, Gregory R S, Yoav L and Dirk E 2015 Phys. Rev. A 92 032322 [5] Matthew A B, Alessandro F, Saleh R K, Justin D, Scott A, Timothy C R and Andrew G W 2013 Science 339 794 [6] Andrea C, Roberto O, Roberta R, Daniel J B, Ernesto F G, Nicolò S, Chiara V, Enrico M, Paolo Mataloni and Fabio S 2013 Nat. Photon. 7 545 [7] Max T, Borivoje D, René H, Stefan N, Alexander S and Philip W 2013 Nat. Photon. 7 540 [8] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460 [9] Nicolas S, Christoph S, Hugues R and Nicolas G 2011 Rev. Mod. Phys. 83 33 [10] Koji A, Kiyoshi T and Hoi K L 2015 Nat. Commun. 6 6787 [11] Temporao G, Zbinden H, Tanzilli Jean S, Gisin N, Aellen T, Giovannini M E, Faist J and Von Der Weid J P 2008 Quantum Inf. Comput. 8 1 [12] Fernandez D C, Bhargava R, Hewitt S M and Levin I W 2005 Nat. Biotechnol. 23 469 [13] Amrania H, Antonacci G, Chan C H, Drummond L, Otto W R, Wright N A and Phillips C 2012 Opt. Express 20 7290 [14] Raghi S E, Diaa K and Mohamed A S 2020 Sci. Rep. 10 1293 [15] Høgstedt L, Dam J S, Sahlberg A L, Li Z S, Aldén M, Pedersen C and Lichtenberg P T 2014 Opt. Lett. 39 5321 [16] Lee K J, Lee S and Shin H 2016 Appl. Opt. 55 9791 [17] Bellei F, Cartwright A P, McCaughan A N, Dane A E, Najafi F, Zhao Q Y and Berggren K K 2016 Opt. Express 24 3248 [18] Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S and Shapiro J H 2008 Phys. Rev. Lett. 101 253601 [19] Wang Q, Hao L, Zhang Y, Xu L, Yang C, Yang X and Zhao Y 2016 Opt. Express 24 5045 [20] Liu Y W, Wu C, Gu X W, Kong Y C, Yu X X, Ge R Y, Cai X L, Qiang X G, Wu J J, Yang X J and Xu P 2020 Opt. Lett. 45 73 [21] Zhu P Y, Liu Y W, Wu C, Xue S C, Yu X Y, Zheng Q L, Wang Y, Qiang X G, Wu J J and Xu P 2020 Chin. Phys. B 29 114201 [22] Chen C C, Bo C, Niu M Y, Xu F H, Zhang Z S, Jeffrey H S and Franco N C W 2020 Opt. Express 25 7300 [23] Jin R B, Ryosuke S, Kentaro W, Hugo B and Masahide S 2013 Opt. Express 21 10659 [24] Kaneda F, Palmett K G, U'Ren A B and Kwiat P G 2016 Opt. Express 24 10733 [25] Liu Y C, Guo D J, Ren K Q, Yang R, Shang M H, Zhou W, Li X H, Sun C W, Xu P, Xie Z D, Gon Y X and Zhu S N 2021 Sci. Rep. 11 12628 [26] Wang J, Zhang C H, Yang L J, Qian X R, Li J and Wang Q 2021 Chin. Phys. B 30 070304 [27] Sun C W, Wu S H, Duan J C, Zhou J W, Xia J L, Xu P, Xie Z D, Gong Y X and Zhu S N 2019 Opt. Lett. 44 5598 [28] Ma B, Wei S H, Chen Z S, Shang X J, Ni H Q and Niu Z C 2018 Chin. Phys. B 27 097802 [29] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207 [30] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [31] Upton L, Harpham M, Suzer O, Richter M, Mukamel S and Goodson T 2013 J. Phys. Chem. 4 2046 [32] Bránczyk A M, Ralph T C, Helwig W and Silberhorn C 2010 New J. Phys. 12 063001 [33] Christ A, Lupo C, Reichelt M, Meier T and Silberhorn C 2014 Phys. Rev. A 90 023823 [34] Evan M S, Nicola M, Johannes T, Linda S, Harald H, Tim J B and Christine S 2017 Phys. Rev. A 95 061803 [35] Vittorio G, Lorenzo M, Jeffrey H S and Franco N C W 2002 Phys. Rev. Lett. 88 183602 [36] Vittorio G, Lorenzo M, Jeffrey H So and Franco N C W 2002 Phys. Rev. A 66 043813 [37] Zhang Q Y, Xue G T, Xu P, Gong Y X, Xie Z D and Zhu S N 2018 Phys. Rev. A 97 022327 [38] Jin R B, Cai N, Huang Y, Hao X Y, Wang S, Li F, Song H Z, Zhou Q and Shimizu R 2019 Phys. Rev. A 11 034067 [39] Laudenbach F, Jin R B, Greganti C, Hentschel M,Walther P and Hübel 2017 Phys. Rev. Appl. 8 024035 [40] Wei B, Cai W H, Ding C L, D G W, Shimizu R, Zhou Q and Jin R B 2021 Opt. Express 29 256 [41] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343 [42] Liscidini M and Sipe J E 2013 Phys. Rev. Lett. 111 193602 [43] Law C K, Walmsley I A and Eberly J H 2000 Phys. Rev. Lett. 84 5304 [44] Fabian L, Hannes H, Michael H, Philip W and Andreas P 2016 Opt. Express 24 2712 [45] Andreas C, Kaisa L, Andreas E, Katiúscia N C and Christine S 2011 New J. Phys. 13 033027 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|