Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034208    DOI: 10.1088/1674-1056/ad1c5d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Engineering the spectra of photon triplets generated from micro/nanofiber

Chuan Qu(瞿川), Dongqin Guo(郭东琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(刘振旗), Yi Zhao(赵义),Shenghai Zhang(张胜海), and Zhengtong Wei(卫正统)
The College of Basic Department, Information Engineering University, Zhengzhou 450000, China
Abstract  Quantum light sources are the core resources for photonics-based quantum information processing. We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber. The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets, the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of √6/3. Therefore, we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time. Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband, non-degenerate photon triplet sources with a high signal-to-noise ratio. Furthermore, the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching, resulting from the periodic oscillation of dispersion. In this scheme, the wavelength of photon triplets can be flexibly tuned using quasi-phase matching. We study the generation of photon triplets from this novel perspective of spectrum engineering, and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.
Keywords:  photon triplets      micro/nanofiber      spectrum engineering  
Received:  23 November 2023      Revised:  08 January 2024      Accepted manuscript online:  09 January 2024
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61605249) and the Science and Technology Key Project of Henan Province of China (Grant Nos. 182102210577 and 232102211086).
Corresponding Authors:  Zhengtong Wei     E-mail:  weizhengtong1987@126.com

Cite this article: 

Chuan Qu(瞿川), Dongqin Guo(郭东琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(刘振旗), Yi Zhao(赵义), Shenghai Zhang(张胜海), and Zhengtong Wei(卫正统) Engineering the spectra of photon triplets generated from micro/nanofiber 2024 Chin. Phys. B 33 034208

[1] Walmsley I A and Raymer M G 2005 Science 307 1733
[2] Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J, Hu Y, Huang J, Li H, Li Y, Chen Y, Jiang X, Gan L, Yang G, You L, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 131 150601
[3] Valivarthi R, Puigibert M G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D and Tittel W 2016 Nat. Photonics 10 676
[4] Yin H L, Chen T Y, Yu Z W, Liu H, You L, Zhou Y, Chen S, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501
[5] Qin J, Deng Y H, Zhong H S, Peng L C, Su H, Luo Y H, Xu J M, Wu D, Gong S Q, Liu H L, Wang H, Chen M C, Li L, Liu N L, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 130 070801
[6] Shukhin A A, Keloth J, Hakuta K and Kalachev A A 2020 Phys. Rev. A 101 053822
[7] Kim J H, Ihn Y S, Kim Y H and Shin H 2019 Opt. Lett. 44 447
[8] Fang B, Menotti M, Liscidini M, Sipe J E and Lorenz V O 2019 Phys. Rev. Lett. 123 070508
[9] Anwar A, Perumangatt C, Steinlechner F, Jennewein T and Ling A 2021 Rev. Sci. Instrum. 92 041101
[10] Garay-Palmett K, Kim D B, Zhang Y, Domínguez-Serna F A, OLorenz V and U'Ren A B 2023 J. Opt. Soc. Am. B 40 469
[11] Niu X L, Gong Y X, Zou X B, Huang Y F and Guo G 2009 J. Mod. Opt. 56 936
[12] Shalm L K, Hamel D R, Yan Z, Simon C, Resch K J and Jennewein T 2012 Nat. Phys. 9 19
[13] Hübel H, Hamel D R, Fedrizzi A, Ramelow S, Resch K J and Jennewein T 2010 Nature 466 601
[14] Khoshnegar M, Huber T, Predojević A, Dalacu D, Prilmüller M, Lapointe J, Wu X, Tamarat P, Lounis B, Poole P J, Weihs G and Majedi H 2017 Nat. Commun. 8 15716
[15] Corona M, Garay-Palmett K and U'Ren A B 2011 Phys. Rev. A 84 033823
[16] Hammer J, Cavanna A, Pennetta R, Chekhova M V, Russell P S J and Joly N Y 2018 Opt. Lett. 43 2320
[17] Moebius M G, Herrera F, Griesse-Nascimento S, Reshef O, Evans C C, Guerreschi G G, Aspuru-Guzik A and Mazur E 2016 Opt. Express 24 9932
[18] Zhang D, Cai Y, Zheng Z, Barral D, Zhang Y, Xiao M and Bencheikh K 2021 Phys. Rev. A 103 013704
[19] González E A R, Borne A, Boulanger B, Levenson J A and Bencheikh K 2018 Phys. Rev. Lett. 120 043601
[20] Cavanna A, Hammer J, Okoth C, Ortiz-Ricardo E, Cruz-Ramirez H, Garay-Palmett K, U' Ren A B, Frosz M H, Jiang X, Joly N Y and Chekhova M V 2020 Phys. Rev. A 101 033840
[21] Tong L, Zi F, Guo X and Lou J 2012 Opt. Commun. 285 4641
[22] Agrawal G 2013 Nonlinear Fiber Optics 5th edn. (Academic Press)
[23] Xu Y, Fang W and Tong L 2017 Optics Express 25 10434
[24] Kang Y, Gong J, Xu Y, Yao N, Fang W, Guo X and Tong L 2020 IEEE Photon. Technol. Lett. 32 219
[25] Warren-Smith S C, Chemnitz M, Schneidewind H, Kostecki R, Ebendorff-Heidepriem H, Monro T M and Schmidt M A 2017 Opt. Lett. 42 1812
[26] Hao Z, Jiang B, Ma Y, Yi R, Jin H, Huang L, Gan X and Zhao J 2023 Phys. Rev. Appl. 19 L031002
[27] Jiang X, Zhang D, Lee T and Brambilla G 2018 Opt. Lett. 43 2728
[28] Saleh M F 2018 Phys. Rev. A 97 013850
[29] Jiang X, Lee T, He J, Khudus M I M A and Brambilla G 2017 Opt. Express 25 22626
[30] Tarnowski K, Kibler B, Finot C and Urbanczyk W 2011 IEEE J. Quantum Electron. 47 622
[31] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[32] Amiri I S, Rashed A N Z and Yupapin P P 2020 J. Opt. Commun. 2019 0187
[33] Savin S V, Digonnet M J F, Kino G S and Shaw H J 2000 Opt. Lett. 25 710
[34] Torres-Gómez I, Ceballos-Herrera D E and Salas-Alcantara K M 2020 Sensors 20 622
[1] Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons
Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱乐天), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2024, 33(2): 020315.
[2] Proposal for sequential Stern-Gerlach experiment with programmable quantum processors
Meng-Jun Hu(胡孟军), Haixing Miao(缪海兴), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(2): 020303.
[3] Unconventional photon blockade in the two-photon Jaynes-Cummings model with two-frequency cavity drivings and atom driving
Xin Liu(刘欣), Meng-Yu Tian(田梦雨), Xiao-Ning Cui(崔晓宁), and Xin-He Zhang(张馨鹤). Chin. Phys. B, 2024, 33(2): 020308.
[4] Optimal and robust control of population transfer in asymmetric quantum-dot molecules
Yu Guo(郭裕), Songshan Ma(马松山), and Chuan-Cun Shu(束传存). Chin. Phys. B, 2024, 33(2): 024203.
[5] Controlling stationary one-way steering in a three-level atomic ensemble
Jie Peng(彭洁), Jun Xu(徐俊), Hua-Zhong Liu(刘华忠), and Zhang-Li Lai(赖章丽). Chin. Phys. B, 2023, 32(12): 120305.
[6] Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
Guohui Kang(康国辉), Jinxia Feng(冯晋霞), Lin Cheng(程琳), Yuanji Li(李渊骥), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2023, 32(10): 104204.
[7] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[8] Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海). Chin. Phys. B, 2023, 32(6): 064202.
[9] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[10] Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert-Schmidt distance
Shaohua Xiang(向少华), Shanshan Li(李珊珊), and Xianwu Mi(米贤武). Chin. Phys. B, 2023, 32(5): 050309.
[11] Enhanced phase sensitive amplification towards improving noise immunity
Hui Guo(郭辉), Zhi Li(李治), Hengxin Sun(孙恒信), Kui Liu(刘奎), and Jiangrui Gao(郜江瑞). Chin. Phys. B, 2023, 32(5): 054204.
[12] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[13] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[14] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!