Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034209    DOI: 10.1088/1674-1056/ad1981
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Versatile and controlled quantum teleportation network

Yao-Yao Zhou(周瑶瑶)1, Peng-Xian Mei(梅鹏娴)1, Yan-Hong Liu(刘艳红)1, Liang Wu(吴量)2, Yan-Xiang Li(李雁翔)3, Zhi-Hui Yan(闫智辉)4,5,†, and Xiao-Jun Jia(贾晓军)4,5
1 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China;
2 College of Information Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China;
3 Shanxi North Machinery Manufacturing Co., Ltd, Taiyuan 030000, China;
4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  A quantum teleportation network involving multiple users is essential for future quantum internet. So far, controlled quantum teleportation has been demonstrated in a three-user network. However, versatile and controlled quantum teleportation network involving more users is in demand, which satisfies different combinations of users for practical requirements. Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users. We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger (GHZ) state to realize such a task by choosing the different measurement and feedback operations. The controlled teleportation network, which includes one sub-network, two sub-networks and three sub-networks, can be realized for different application of user combinations. Furthermore, the coherent feedback control (CFC) can manipulate and improve the teleportation performance. Our approach is flexible and scalable, and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
Keywords:  quantum teleportation      coherent feedback control      versatile      controlled transformation  
Received:  31 October 2023      Revised:  13 December 2023      Accepted manuscript online:  29 December 2023
PACS:  42.50.-p (Quantum optics)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  03.67.Hk (Quantum communication)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214), the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029), the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500), the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of China, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi and the Fund for Shanxi “1331 Project” Key Subjects Construction.
Corresponding Authors:  Zhi-Hui Yan     E-mail:  zhyan@sxu.edu.cn

Cite this article: 

Yao-Yao Zhou(周瑶瑶), Peng-Xian Mei(梅鹏娴), Yan-Hong Liu(刘艳红), Liang Wu(吴量), Yan-Xiang Li(李雁翔), Zhi-Hui Yan(闫智辉), and Xiao-Jun Jia(贾晓军) Versatile and controlled quantum teleportation network 2024 Chin. Phys. B 33 034209

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[3] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[4] Nielsen M A, Knill E and Laflamme R 1998 Nature 396 52
[5] Marcikic I, De Riedmatten H, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509
[6] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[7] Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T and Lam P K 2003 Phys. Rev. A 67 032302
[8] Zhang T C, Goh K, Chou C, Lodahl P and Kimble H J 2003 Phys. Rev. A 67 033802
[9] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[10] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[11] Gottesman D and Chuang I L 1999 Nature 402 390
[12] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[13] Yonezawa H, Aoki T and Furusawa A 2004 Nature 431 430
[14] Makino K, Hashimoto Y, Yoshikawa J I, Ohdan H, Toyama T, van Loock P and Furusawa A 2016 Sci. Adv. 2 e1501772
[15] Xu J S, Yung M H, Xu X Y, Tang J S, Li C F and Guo G C 2016 Sci. Adv. 2 e1500672
[16] Bouchard F, Fickler R, Boyd R W and Karimi E 2017 Sci. Adv. 3 e1601915
[17] Vaidman L 1994 Phys. Rev. A 49 1473
[18] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M and Li L 2017 Nature 549 70
[19] Huo M, Qin J, Cheng J, Yan Z, Qin Z, Su X, Jia X, Xie C and Peng K 2018 Sci. Adv. 4 eaas9401
[20] Yan Z H, Qin J L, Qin Z Z, Su X L, Jia X J, Xie C D and Peng K C 2021 Fundam. Res. 1 43
[21] Liu S, Lou Y and Jing J 2020 Nat. Commun. 11 3875
[22] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F and Li C F 2020 Phys. Rev. Lett. 125 230501
[23] Zhou Y, Yu J, Yan Z, Jia X, Zhang J, Xie C and Peng K 2018 Phys. Rev. Lett. 121 150502
[24] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[25] Braunstein S and Pati A 2003 Quantum Information with Continuous Variables (Dordrecht: Kluwer Academic Publishers)
[26] Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Chen W, Zhou Z, Wang Z H, Teng J and Guo G C 2022 Optica 9 812
[27] van Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482
[28] Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature 430 54
[29] Hermans S, Pompili M, Beukers H, Baier S, Borregaard J and Hanson R 2022 Nature 605 663
[30] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[31] Lee J and Kim M 2000 Phys. Rev. Lett. 84 4236
[32] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photonics 9 641
[33] Huo N, Liu Y, Li J, Cui L, Chen X, Palivela R, Xie T, Li X and Ou Z 2020 Phys. Rev. Lett. 124 213603
[34] Zhou Y, Jia X, Li F, Yu J, Xie C and Peng K 2015 Sci. Rep. 5 11132
[35] van Loock P, Weedbrook C and Gu M 2007 Phys. Rev. A 76 032321
[36] Zhou Y, Jia X, Li F, Xie C and Peng K 2015 Opt. Express 23 4952
[37] Van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315
[38] Takei N, Aoki T, Koike S, Yoshino K I, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M and Ban M 2005 Phys. Rev. A 72 042304
[39] Braunstein S L, Fuchs C A and Kimble H J 2000 J. Mod. Opt. 47 267
[40] Braunstein S L, Fuchs C A, Kimble H J and van Loock P 2001 Phys. Rev. A 64 022321
[41] Šarc V, Nováková M, Dudka M and Ježek M 2023 Opt. Express 31 12562
[42] Wang X, Wu L, Liang S, Cheng J, Liu Y, Zhou Y, Qin J, Yan Z and Jia X 2022 Opt. Express 30 47826
[1] Quantum state protection from finite-temperature thermal noise with application to controlled quantum teleportation
Chi Wang(王驰), Sajede Harraz, Jiao-Yang Zhang(张骄阳), and Shuang Cong(丛爽). Chin. Phys. B, 2023, 32(5): 050306.
[2] Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎). Chin. Phys. B, 2023, 32(10): 100311.
[3] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[4] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[5] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[6] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[7] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[8] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[9] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing (赵明镜), Chen Bin (陈斌), Fei Shao-Ming (费少明). Chin. Phys. B, 2015, 24(7): 070302.
[10] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[11] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[12] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping (张国平), Zheng Kai-Min (郑凯敏), Liu Shi-You (刘世右), Hu Li-Yun (胡利云). Chin. Phys. B, 2014, 23(5): 050301.
[13] Distributed wireless quantum communication networks
Yu Xu-Tao (余旭涛), Xu Jin (徐进), Zhang Zai-Chen (张在琛). Chin. Phys. B, 2013, 22(9): 090311.
[14] Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels
Peng Jia-Yin (彭家寅), Mo Zhi-Wen (莫智文). Chin. Phys. B, 2013, 22(5): 050310.
[15] The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states
Zhang Jing-Tao (张静涛), He Guang-Qiang (何广强), Ren Li-Jie (任李杰), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2011, 20(5): 050311.
No Suggested Reading articles found!