ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Versatile and controlled quantum teleportation network |
Yao-Yao Zhou(周瑶瑶)1, Peng-Xian Mei(梅鹏娴)1, Yan-Hong Liu(刘艳红)1, Liang Wu(吴量)2, Yan-Xiang Li(李雁翔)3, Zhi-Hui Yan(闫智辉)4,5,†, and Xiao-Jun Jia(贾晓军)4,5 |
1 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China; 2 College of Information Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China; 3 Shanxi North Machinery Manufacturing Co., Ltd, Taiyuan 030000, China; 4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; 5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract A quantum teleportation network involving multiple users is essential for future quantum internet. So far, controlled quantum teleportation has been demonstrated in a three-user network. However, versatile and controlled quantum teleportation network involving more users is in demand, which satisfies different combinations of users for practical requirements. Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users. We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger (GHZ) state to realize such a task by choosing the different measurement and feedback operations. The controlled teleportation network, which includes one sub-network, two sub-networks and three sub-networks, can be realized for different application of user combinations. Furthermore, the coherent feedback control (CFC) can manipulate and improve the teleportation performance. Our approach is flexible and scalable, and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
|
Received: 31 October 2023
Revised: 13 December 2023
Accepted manuscript online: 29 December 2023
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214), the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029), the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500), the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of China, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi and the Fund for Shanxi “1331 Project” Key Subjects Construction. |
Corresponding Authors:
Zhi-Hui Yan
E-mail: zhyan@sxu.edu.cn
|
Cite this article:
Yao-Yao Zhou(周瑶瑶), Peng-Xian Mei(梅鹏娴), Yan-Hong Liu(刘艳红), Liang Wu(吴量), Yan-Xiang Li(李雁翔), Zhi-Hui Yan(闫智辉), and Xiao-Jun Jia(贾晓军) Versatile and controlled quantum teleportation network 2024 Chin. Phys. B 33 034209
|
[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575 [3] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121 [4] Nielsen M A, Knill E and Laflamme R 1998 Nature 396 52 [5] Marcikic I, De Riedmatten H, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509 [6] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706 [7] Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T and Lam P K 2003 Phys. Rev. A 67 032302 [8] Zhang T C, Goh K, Chou C, Lodahl P and Kimble H J 2003 Phys. Rev. A 67 033802 [9] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891 [10] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932 [11] Gottesman D and Chuang I L 1999 Nature 402 390 [12] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 [13] Yonezawa H, Aoki T and Furusawa A 2004 Nature 431 430 [14] Makino K, Hashimoto Y, Yoshikawa J I, Ohdan H, Toyama T, van Loock P and Furusawa A 2016 Sci. Adv. 2 e1501772 [15] Xu J S, Yung M H, Xu X Y, Tang J S, Li C F and Guo G C 2016 Sci. Adv. 2 e1500672 [16] Bouchard F, Fickler R, Boyd R W and Karimi E 2017 Sci. Adv. 3 e1601915 [17] Vaidman L 1994 Phys. Rev. A 49 1473 [18] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M and Li L 2017 Nature 549 70 [19] Huo M, Qin J, Cheng J, Yan Z, Qin Z, Su X, Jia X, Xie C and Peng K 2018 Sci. Adv. 4 eaas9401 [20] Yan Z H, Qin J L, Qin Z Z, Su X L, Jia X J, Xie C D and Peng K C 2021 Fundam. Res. 1 43 [21] Liu S, Lou Y and Jing J 2020 Nat. Commun. 11 3875 [22] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F and Li C F 2020 Phys. Rev. Lett. 125 230501 [23] Zhou Y, Yu J, Yan Z, Jia X, Zhang J, Xie C and Peng K 2018 Phys. Rev. Lett. 121 150502 [24] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [25] Braunstein S and Pati A 2003 Quantum Information with Continuous Variables (Dordrecht: Kluwer Academic Publishers) [26] Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Chen W, Zhou Z, Wang Z H, Teng J and Guo G C 2022 Optica 9 812 [27] van Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482 [28] Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature 430 54 [29] Hermans S, Pompili M, Beukers H, Baier S, Borregaard J and Hanson R 2022 Nature 605 663 [30] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394 [31] Lee J and Kim M 2000 Phys. Rev. Lett. 84 4236 [32] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photonics 9 641 [33] Huo N, Liu Y, Li J, Cui L, Chen X, Palivela R, Xie T, Li X and Ou Z 2020 Phys. Rev. Lett. 124 213603 [34] Zhou Y, Jia X, Li F, Yu J, Xie C and Peng K 2015 Sci. Rep. 5 11132 [35] van Loock P, Weedbrook C and Gu M 2007 Phys. Rev. A 76 032321 [36] Zhou Y, Jia X, Li F, Xie C and Peng K 2015 Opt. Express 23 4952 [37] Van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315 [38] Takei N, Aoki T, Koike S, Yoshino K I, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M and Ban M 2005 Phys. Rev. A 72 042304 [39] Braunstein S L, Fuchs C A and Kimble H J 2000 J. Mod. Opt. 47 267 [40] Braunstein S L, Fuchs C A, Kimble H J and van Loock P 2001 Phys. Rev. A 64 022321 [41] Šarc V, Nováková M, Dudka M and Ježek M 2023 Opt. Express 31 12562 [42] Wang X, Wu L, Liang S, Cheng J, Liu Y, Zhou Y, Qin J, Yan Z and Jia X 2022 Opt. Express 30 47826 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|