ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference |
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海)† |
College of Basic Department, Information Engineering University, Zhengzhou 450000, China |
|
|
Abstract Spectrally uncorrelated biphotons are the essential resources for achieving various quantum information processing protocols. We theoretically investigate the generation of spectrally uncorrelated biphotons emitted by spontaneous four-wave mixing from a fiber nonlinear interferometer which consists of an N-stage nonlinear gain fiber and an (N-1)-stage dispersion modulation fiber. The output biphoton states of nonlinear interference are the coherent superposition of various biphoton states born in each nonlinear fiber, and thus the interference fringe will reshape the biphoton joint spectra. As a result, resorting to Taylor expansion to first order for phase mismatching, we theoretically verify that the orientation of phase matching contours will rotate in a specific way with only varying the length of dispersion modulation fiber. The rotation in orientation of phase matching contours may result in spectrally uncorrelated biphotons and even arbitrary correlation biphotons. Further, we choose micro/nanofiber as the nonlinear gain fiber and single-mode communication fiber as dispersion modulation fiber to numerically simulate the generation of spectrally uncorrelated biphotons from spontaneous fourwave mixing. Here, due to significant frequency detuning (hundreds of THz), Raman background noise can be considerably suppressed, even at room temperature, and photons with largely tunable wavelengths can be achieved, indicating a practicability in many quantum fields. A photon mode purity of 97.2% will be theoretically attained without weakening the heralding nature of biphoton sources. We think that this fiber nonlinear interference with the flexibly engineered quantum state can be an excellent practical source for quantum information processing.
|
Received: 05 December 2022
Revised: 18 January 2023
Accepted manuscript online: 31 January 2023
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
42.81.-i
|
(Fiber optics)
|
|
Fund: Project supported by the Science and Technology Key Project of Henan Province, China (Grant No. 182102210577), and the National Natural Science Foundation of China (Grant No. 61605249). |
Corresponding Authors:
Shenghai Zhang
E-mail: Ccstshz@163.com
|
Cite this article:
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海) Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference 2023 Chin. Phys. B 32 064202
|
[1] Lu C Y, Cao Y, Peng C Z and Pan J W2022 Rev. Mod. Phys. 94 035001 [2] Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M and Sasaki M2013 Phys. Rev. A 87 063801 [3] Tsujimoto Y, Wakui K, Fujiwara M, Sasaki M and Takeoka M2021 Opt. Express 29 37150 [4] Valivarthi R, Puigibert Marcel li G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D and Tittel W2016 Nat. Photon. 10 676 [5] Lo H K, Curty M and Qi B2012 Phys. Rev. Lett. 108 130503 [6] Walmsley I A and Raymer M G2005 Science 307 1733 [7] Anwar A, Perumangatt C, Steinlechner F, Jennewein T and Ling A2021 Rev. Sci. Instrum. 92 041101 [8] Zhang C, Huang Y, Liu B, Li C and Guo G2021 Adv. Quantum Technol. 4 2000132 [9] Garay-Palmett K, Kim D B, Zhang Y, Domínguez-Serna F A, Lorenz V O and U'Ren A B2022 J. Opt. Soc. Am. B 40 469 [10] Garay-Palmett K, McGuinness H J, Cohen O, Lundeen J S, Rangel-Rojo R, U'ren A B, Raymer M G, McKinstrie C J, Radic S and Walmsley I A2007 Opt. Express 15 14870 [11] Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C and Walmsley I A2008 Phys. Rev. Lett. 100 133601 [12] Liu Y C, Guo D J, Ren K Q, Yang R, Shang M, Zhou W, Li X, Sun C W, Xu P, Xie Z, Gong Y X and Zhu S N2021 Sci. Rep. 11 12628 [13] Marhic M E, Yang F S, Min-Chen Ho and Kazovsky L G1999 J. Lightw. Technol. 17 210 [14] Cai W H, Wei B, Wang S and Jin R B2020 J. Opt. Soc. Am. B 37 3048 [15] Zhu H N, Luo B, Pan W, Yan L S, Zhao J P, Wang Z Y and Gao X R2013 Chin. Phys. Lett. 30 074206 [16] Jiang X, Zhang D, Lee T and Brambilla G2018 Opt. Lett. 43 2728 [17] Li D, Yuan C H, Ou Z Y and Zhang W2014 New J. Phys. 16 073020 [18] Marino A M, Corzo Trejo N V and Lett P D2012 Phys. Rev. A 86 023844 [19] Li J, Liu Y, Huo N, Cui L, Feng S, Li X and Ou Z Y2020 Phys. Rev. A 101 053801 [20] Kaiser F, Vergyris P, Aktas D, Babin C, Labonté L and Tanzilli S2018 Light Sci. Appl. 7 17163 [21] Lemos G B, Borish V, Cole G D, Ramelow S, Lapkiewicz R and Zeilinger A2014 Nature 512 409 [22] Riazi A, Chen C, Zhu E Y, Gladyshev A V, Kazansky P G, Sipe J E and Qian L2019 npj Quantum Inf. 5 77 [23] Su J, Cui L, Li J, Liu Y, Li X and Ou Z Y2019 Opt. Express 27 20479 [24] Li J, Su J, Cui L, Xie T, Ou Z Y and Li X2020 Appl. Phys. Lett. 116 204002 [25] Park K, Lee D and Shin H2021 Appl. Sci. 11 1429 [26] Tong L, Zi F, Guo X and Lou J2012 Opt. Commun. 285 4641 [27] Garay-Palmett K, U'Ren A B and Rangel-Rojo R2010 Phys. Rev. A 82 043809 [28] Lugani J, Francis-Jones R J A, Boutari J and Walmsley I A2020 Opt. Express 28 5147 [29] Cui L, Li X and Zhao N2012 New J. Phys. 14 123001 [30] Cui L, Su J, Li J, Liu Y, Li X and Ou Z Y2020 Phys. Rev. A 102 033718 [31] U'Ren A B, Silberhorn C, Erdmann R, Banaszek K, Grice W P, Walmsley I A and Raymer M G 2005 Laser Physics 15 146 [32] U'Ren A B, Erdmann R K, de la Cruz-Gutierrez M and Walmsley I A2006 Phys. Rev. Lett. 97 223602 [33] Shukhin A A, Keloth J, Hakuta K and Kalachev A A2020 Phys. Rev. A 101 053822 [34] Kim J H, Ihn Y S, Kim Y H and Shin H2019 Opt. Lett. 44 447 [35] Kang Y, Gong J, Xu Y, Yao N, Fang W, Guo X and Tong L2020 IEEE Photon. Technol. Lett. 32 219 [36] Yao N, Linghu S, Xu Y, Zhu R, Zhou N, Gu F, Zhang L, Fang W, Ding W and Tong L2020 IEEE Photon. Technol. Lett. 32 1069 [37] Ortiz-Ricardo E, Bertoni-Ocampo C, Ibarra-Borja Z, Ramirez-Alarcon R, Cruz-Delgado D, Cruz-Ramirez H, Garay-Palmett K and U'Ren A B2017 Quantum Sci. Technol. 2 034015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|