Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064202    DOI: 10.1088/1674-1056/acb767
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference

Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海)
College of Basic Department, Information Engineering University, Zhengzhou 450000, China
Abstract  Spectrally uncorrelated biphotons are the essential resources for achieving various quantum information processing protocols. We theoretically investigate the generation of spectrally uncorrelated biphotons emitted by spontaneous four-wave mixing from a fiber nonlinear interferometer which consists of an N-stage nonlinear gain fiber and an (N-1)-stage dispersion modulation fiber. The output biphoton states of nonlinear interference are the coherent superposition of various biphoton states born in each nonlinear fiber, and thus the interference fringe will reshape the biphoton joint spectra. As a result, resorting to Taylor expansion to first order for phase mismatching, we theoretically verify that the orientation of phase matching contours will rotate in a specific way with only varying the length of dispersion modulation fiber. The rotation in orientation of phase matching contours may result in spectrally uncorrelated biphotons and even arbitrary correlation biphotons. Further, we choose micro/nanofiber as the nonlinear gain fiber and single-mode communication fiber as dispersion modulation fiber to numerically simulate the generation of spectrally uncorrelated biphotons from spontaneous fourwave mixing. Here, due to significant frequency detuning (hundreds of THz), Raman background noise can be considerably suppressed, even at room temperature, and photons with largely tunable wavelengths can be achieved, indicating a practicability in many quantum fields. A photon mode purity of 97.2% will be theoretically attained without weakening the heralding nature of biphoton sources. We think that this fiber nonlinear interference with the flexibly engineered quantum state can be an excellent practical source for quantum information processing.
Keywords:  photon mode purity      nonlinear quantum interference      group velocity matching  
Received:  05 December 2022      Revised:  18 January 2023      Accepted manuscript online:  31 January 2023
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the Science and Technology Key Project of Henan Province, China (Grant No. 182102210577), and the National Natural Science Foundation of China (Grant No. 61605249).
Corresponding Authors:  Shenghai Zhang     E-mail:  Ccstshz@163.com

Cite this article: 

Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海) Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference 2023 Chin. Phys. B 32 064202

[1] Lu C Y, Cao Y, Peng C Z and Pan J W2022 Rev. Mod. Phys. 94 035001
[2] Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M and Sasaki M2013 Phys. Rev. A 87 063801
[3] Tsujimoto Y, Wakui K, Fujiwara M, Sasaki M and Takeoka M2021 Opt. Express 29 37150
[4] Valivarthi R, Puigibert Marcel li G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D and Tittel W2016 Nat. Photon. 10 676
[5] Lo H K, Curty M and Qi B2012 Phys. Rev. Lett. 108 130503
[6] Walmsley I A and Raymer M G2005 Science 307 1733
[7] Anwar A, Perumangatt C, Steinlechner F, Jennewein T and Ling A2021 Rev. Sci. Instrum. 92 041101
[8] Zhang C, Huang Y, Liu B, Li C and Guo G2021 Adv. Quantum Technol. 4 2000132
[9] Garay-Palmett K, Kim D B, Zhang Y, Domínguez-Serna F A, Lorenz V O and U'Ren A B2022 J. Opt. Soc. Am. B 40 469
[10] Garay-Palmett K, McGuinness H J, Cohen O, Lundeen J S, Rangel-Rojo R, U'ren A B, Raymer M G, McKinstrie C J, Radic S and Walmsley I A2007 Opt. Express 15 14870
[11] Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C and Walmsley I A2008 Phys. Rev. Lett. 100 133601
[12] Liu Y C, Guo D J, Ren K Q, Yang R, Shang M, Zhou W, Li X, Sun C W, Xu P, Xie Z, Gong Y X and Zhu S N2021 Sci. Rep. 11 12628
[13] Marhic M E, Yang F S, Min-Chen Ho and Kazovsky L G1999 J. Lightw. Technol. 17 210
[14] Cai W H, Wei B, Wang S and Jin R B2020 J. Opt. Soc. Am. B 37 3048
[15] Zhu H N, Luo B, Pan W, Yan L S, Zhao J P, Wang Z Y and Gao X R2013 Chin. Phys. Lett. 30 074206
[16] Jiang X, Zhang D, Lee T and Brambilla G2018 Opt. Lett. 43 2728
[17] Li D, Yuan C H, Ou Z Y and Zhang W2014 New J. Phys. 16 073020
[18] Marino A M, Corzo Trejo N V and Lett P D2012 Phys. Rev. A 86 023844
[19] Li J, Liu Y, Huo N, Cui L, Feng S, Li X and Ou Z Y2020 Phys. Rev. A 101 053801
[20] Kaiser F, Vergyris P, Aktas D, Babin C, Labonté L and Tanzilli S2018 Light Sci. Appl. 7 17163
[21] Lemos G B, Borish V, Cole G D, Ramelow S, Lapkiewicz R and Zeilinger A2014 Nature 512 409
[22] Riazi A, Chen C, Zhu E Y, Gladyshev A V, Kazansky P G, Sipe J E and Qian L2019 npj Quantum Inf. 5 77
[23] Su J, Cui L, Li J, Liu Y, Li X and Ou Z Y2019 Opt. Express 27 20479
[24] Li J, Su J, Cui L, Xie T, Ou Z Y and Li X2020 Appl. Phys. Lett. 116 204002
[25] Park K, Lee D and Shin H2021 Appl. Sci. 11 1429
[26] Tong L, Zi F, Guo X and Lou J2012 Opt. Commun. 285 4641
[27] Garay-Palmett K, U'Ren A B and Rangel-Rojo R2010 Phys. Rev. A 82 043809
[28] Lugani J, Francis-Jones R J A, Boutari J and Walmsley I A2020 Opt. Express 28 5147
[29] Cui L, Li X and Zhao N2012 New J. Phys. 14 123001
[30] Cui L, Su J, Li J, Liu Y, Li X and Ou Z Y2020 Phys. Rev. A 102 033718
[31] U'Ren A B, Silberhorn C, Erdmann R, Banaszek K, Grice W P, Walmsley I A and Raymer M G 2005 Laser Physics 15 146
[32] U'Ren A B, Erdmann R K, de la Cruz-Gutierrez M and Walmsley I A2006 Phys. Rev. Lett. 97 223602
[33] Shukhin A A, Keloth J, Hakuta K and Kalachev A A2020 Phys. Rev. A 101 053822
[34] Kim J H, Ihn Y S, Kim Y H and Shin H2019 Opt. Lett. 44 447
[35] Kang Y, Gong J, Xu Y, Yao N, Fang W, Guo X and Tong L2020 IEEE Photon. Technol. Lett. 32 219
[36] Yao N, Linghu S, Xu Y, Zhu R, Zhou N, Gu F, Zhang L, Fang W, Ding W and Tong L2020 IEEE Photon. Technol. Lett. 32 1069
[37] Ortiz-Ricardo E, Bertoni-Ocampo C, Ibarra-Borja Z, Ramirez-Alarcon R, Cruz-Delgado D, Cruz-Ramirez H, Garay-Palmett K and U'Ren A B2017 Quantum Sci. Technol. 2 034015
[1] Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses
Wei-Bin Li(李卫彬), Ming-Xi Deng(邓明晰), Yan-Xun Xiang(项延训). Chin. Phys. B, 2017, 26(11): 114302.
[2] Time-domain analysis of second-harmonic generation of primary Lamb wave propagation in an elastic plate
Deng Ming-Xi(邓明晰) and Xiang Yan-Xun(项延训) . Chin. Phys. B, 2010, 19(11): 114302.
No Suggested Reading articles found!