Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024203    DOI: 10.1088/1674-1056/ad0627
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimal and robust control of population transfer in asymmetric quantum-dot molecules

Yu Guo(郭裕)1, Songshan Ma(马松山)2,†, and Chuan-Cun Shu(束传存)2,‡
1 Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China;
2 Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
Abstract  We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules. We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse. To overcome fluctuations in control field parameters, we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude. It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields, leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states. The method demonstrates resilience to fluctuations in control field parameters, making it a promising approach for reliable and efficient population transfer in practical applications.
Keywords:  population transfer      quantum optimal control theory      quantum-dot molecules  
Received:  23 August 2023      Revised:  11 October 2023      Accepted manuscript online:  24 October 2023
PACS:  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
  73.63.Kv (Quantum dots)  
Fund: This work was supported by the National Natural Science Foundations of China (Grant Nos. 12275033, 61973317, and 12274470), the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (Grant No. 2022JJ10070), the Natural Science Foundation of Hunan Province (Grant No. 2022JJ30582), and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 20A025).
Corresponding Authors:  Songshan Ma, Chuan-Cun Shu     E-mail:  songshan@csu.edu.cn;cc.shu@csu.edu.cn

Cite this article: 

Yu Guo(郭裕), Songshan Ma(马松山), and Chuan-Cun Shu(束传存) Optimal and robust control of population transfer in asymmetric quantum-dot molecules 2024 Chin. Phys. B 33 024203

[1] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[2] Guo Y, Liao J Q and Kuang L M 2007 Chin. Phys. Lett. 24 3044
[3] Guo Y, Zhou L, Kuang L M and Sun C P 2008 Phys. Rev. A 78 013833
[4] Zhdanovich S, Shapiro E A, Shapiro M, Hepburn J W and Milner V 2008 Phys. Rev. Lett. 100 103004
[5] Liu Y, Guo Y and Zhou D L 2013 Europhys. Lett. 102 50003
[6] Dou F Q, Cao H, Liu J and Fu L B 2016 Phys. Rev. A 93 043419
[7] Shi Z C, Wang W and Yi X X 2016 Opt. Express 24 21971
[8] Zhang C, Liu Y, Shi Z C, Song J, Xia Y and Zheng S B 2022 Phys. Rev. A 105 042414
[9] Gong X, Guo Y, Wang C Z, Luo X B and Shu C C 2022 Phys. Chem. Chem. Phys. 24 18722
[10] Cheng J J, Chen Y Y, Li Y and Zhang L 2023 Phys. Rev. A 107 013718
[11] Shi Z C, Zhang C, Shen L T, Song J, Xia Y and Yi X X 2023 Phys. Rev. Res. 5 L032008
[12] Hong Q Q, Lian Z Z, Shu C C and Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763
[13] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006
[14] Shu C C, Yu J, Yuan K J, Hu W H, Yang J and Cong S L 2009 Phys. Rev. A 79 023418
[15] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[16] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[17] Luan T Z, Shen H Z and Yi X X 2022 Phys. Rev. A 105 013714
[18] Torosov B T, Guérin S and Vitanov N V 2011 Phys. Rev. Lett. 106 233001
[19] Wu H N, Zhang C, Song J, Xia Y and Shi Z C 2023 Phys. Rev. A 107 023103
[20] Werschnik J and Gross E K U 2007 J. Phys. B: At. Mol. Opt. Phys. 40 R175
[21] Glaser S J, Boscain U, Calarco T, Koch C P, Köckenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T, Sugny D and Wilhelm F K 2015 Eur. Phys. J. D 69 279
[22] Boscain U, Sigalotti M and Sugny D 2021 PRX Quantum 2 030203
[23] Dong D, Shu C C, Chen J C, Xing X, Ma H L, Guo Y and Rabitz H 2021 IEEE Trans. Control. Syst. Technol. 29 1791
[24] Shu C C, Ho T S and Rabitz H 2016 Phys. Rev. A 93 053418
[25] Guo Y 2018 Int. J. Theor. Phys. 57 3865
[26] Guo Y, Luo X B, Ma S and Shu C C 2019 Phys. Rev. A 100 023409
[27] Shu C C, Ho T S, Xing X and Rabitz H 2016 Phys. Rev. A 93 033417
[28] Shu C C, Dong D, Petersen Ian R and Henriksen Niels E 2017 Phys. Rev. A 95 033809
[29] Guo Y, Dong D and Shu C C 2018 Phys. Chem. Chem. Phys. 20 9498
[30] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[31] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[32] Zhu X Y, Guo A L, Zhou Z Q and Guo G C 2020 Chin. Phys. Lett. 37 020302
[33] Chatterjee A, Stevenson P, Franceschi S D, Morello A, Leon N P and Kuemmeth F 2021 Nat. Rev. Phys. 3 157
[34] Wang K, Xu G, Gao F, Liu H, Ma R L, Zhang X, Wang Z N, Cao G, Wang T, Zhang J J, Culcer D, Hu X D, Jiang H W, Li H O, Guo G C and Guo G P 2022 Nat. Commun. 13 206
[35] Jennings C, Ma X Y, Wickramasinghe T, Doty M, Scheibner M, Stinaff E and Ware M 2019 Adv. Quantum Technol. 3 1900085
[36] Yao H F, Cui N, Niu Y P and Gong S Q 2011 Photon. Nanostruct. 9 174
[37] Wang H and Zhu K D 2008 Europhys. Lett. 82 60006
[38] Wang H and Zhu K D 2010 Opt. Commun. 283 4008
[39] Li J H, Yu R, Si L G, Lü X Y and Yang X X 2009 J. Phys. B: At. Mol. Opt. Phys. 42 055509
[40] Li J H, Yu R and Yang X X 2010 Phys. Lett. A 374 3762
[41] Cheng M T, Ma X S, Luo Y Q, Wang P Z and Zhao G X 2011 Appl. Phys. Lett. 99 223509
[42] Lü X Y, Wu J, Zheng L L and Zhan Z M 2014 Phys. Rev. A 83 042302
[43] Wang Y, Zhou S J, Deng Y H and Chen Q 2023 Chin. Phys. B 32 054203
[44] Villas-Bôas J M, Govorov A O and Ulloa S E 2004 Phys. Rev. B 69 125342
[45] Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G and Michler P 2006 Phys. Rev. Lett. 96 137401
[46] Borges H S, Sanz L and Villas-Bôas J M 2010 Phys. Rev. B 81 075322
[47] Borges H S, Oliveira M H and Villas-Bôas C J 2017 Sci. Rep. 7 7132
[48] Guo Y, Liu P F and Shu C C 2022 Acta Opt. Sin. 42 2327001 (in Chinese)
[49] Yuan C H and Zhu K D 2006 Appl. Phys. Lett. 89 052115
[50] Peng Y D, Niu Y P, Cui N and Gong S Q 2011 Opt. Commun. 284 824
[51] Borges H S, Sanz L, Villas-Bôas J M, Diniz Neto O O and Alcalde A M 2012 Phys. Rev. B 85 115425
[52] Veisi M, Kazemi S H and Mahmoudi M 2020 Sci. Rep. 10 16304
[53] Azizi B, Sabegh A S, Mahmoudi M and Rasouli S 2021 Sci. Rep. 11 6827
[54] Hu Y S, Cheng G L and Chen A X 2020 Opt. Express 28 29805
[55] Sun R J, Hu Y S, Cheng G L and Chen A X 2021 Laser Phys. Lett. 18 095202
[56] Cheng G L, Hu Y S, Zhong X W and Chen A X 2022 Chin. Phys. B 31 014202
[57] Guo Y, Shu C C, Dong D Y and Nori F 2019 Phys. Rev. Lett. 123 223202
[58] Guo Y, Gong X, Ma S S and Shu C C 2022 Phys. Rev. A 105 013102
[59] Fan L B, Shu C C, Dong D Y, He J, Henriksen N E and Nori F 2023 Phys. Rev. Lett. 130 043604
[60] Fan L B and Shu C C 2023 J. Phys. A: Math. Theor. 56 365302
[61] Shchedrin G, O'Brien C, Rostovtsev Y and Scully M O 2015 Phys. Rev. A 92 063815
[62] Shu C C, Hong Q Q, Guo Y and Henriksen N E 2020 Phys. Rev. A 102 063124
[63] Shu C C, Guo Y, Yuan K J, Dong D Y and Bandrauk A D 2020 Opt. Lett. 45 960
[64] Hong Q Q, Fan L B, Shu C C and Henriksen N E 2021 Phys. Rev. A 104 013108
[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Complete population transfer between next-adjacent energy levels of a transmon qudit
Yingshan Zhang(张颖珊), Pei Liu(刘培), Jingning Zhang(张静宁), Ruixia Wang(王睿侠), Weiyang Liu(刘伟洋), Jiaxiu Han(韩佳秀), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2023, 32(12): 120306.
[3] Delay time dependence of wave packet motion and population transfer of four-level K2 molecule in pump-pump-probe pulses
Zhiqiang Chang(常志强), Changming Li(李昌明), Wei Guo(郭玮), Hongbin Yao(姚洪斌). Chin. Phys. B, 2018, 27(5): 053301.
[4] Dynamics of a three-level V-type atom driven by a cavity photon and microwave field
Yan-Li Xue(薛艳丽), Shi-Deng Zhu(朱诗灯), Ju Liu(刘菊), Ting-Hui Xiao(肖廷辉), Bao-Hua Feng(冯宝华), Zhi-Yuan Li(李志远). Chin. Phys. B, 2016, 25(4): 044203.
[5] Population coherent control of Rydberg potassium atom via adiabatic passage
Jiang Li-Juan (蒋利娟), Zhang Xian-Zhou (张现周), Jia Guang-Rui (贾光瑞), Zhang Yong-Hui (张永慧), Xia Li-Hua (夏立华 ). Chin. Phys. B, 2013, 22(2): 023101.
[6] Population coherent control of Rydberg sodium atom in microwave field
Jiang Li-Juan(蒋利娟), Zhang Xian-Zhou(张现周), Jia Guang-Rui(贾光瑞), Zhang Yong-Hui(张永慧), and Xia Li-Hua(夏立华) . Chin. Phys. B, 2012, 21(7): 073101.
[7] Coherence generation and population transfer in a three-level ladder system
Zhang Bing(张冰), Jiang Yun(姜云), Wang Gang(王刚), Zhang Li-Da(张理达), Wu Jin-Hui(吴金辉), and Gao Jin-Yue(高锦岳). Chin. Phys. B, 2011, 20(5): 050304.
[8] Laser pulse design for coherent control of Rydberg lithium atoms
Zhang Xian-Zhou(张现周), Wu Su-Ling(伍素玲), Jiang Li-Juan(蒋利娟), Ma Huan-Qiang(马欢强), and Jia Guang-Rui(贾光瑞). Chin. Phys. B, 2010, 19(8): 083101.
[9] Population transfer by femtosecond laser pulses in a ladder-type atomic system
Fan Xi-Jun(樊锡君), Li Ai-Yun(李爱云), Tong Dian-Min(仝殿民), and Liu Cheng-Pu(刘呈普). Chin. Phys. B, 2008, 17(7): 2522-2526.
[10] Numerical exploration of population transfer of Rydberg-atom by single frequency-chirped laser pulse
Zhang Xian-Zhou (张现周), Ren Zhen-Zhong (任振忠), Jia Guang-Rui (贾光瑞), Guo Xiao-Tian (郭笑天), Gong Wei-Gui (公伟贵). Chin. Phys. B, 2008, 17(12): 4476-4480.
[11] Laser pulse design for coherent laser control of potassium atoms
Zhang Xian-Zhou(张现周), Jia Guang-Rui(贾光瑞), and He Hai-Fang(何海芳). Chin. Phys. B, 2007, 16(8): 2349-2355.
[12] Numerical exploration of coherent excitation in three-level ladder systems
Zhang Xian-Zhou(张现周), Li Xiao-Hong(李小红), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(7): 1947-1951.
[13] Population transfer via adiabatic passage in the Rydberg potassium atom
Li Xiao-Hong(李小红), Zhang Xian-Zhou(张现周), Zhang Rui-Zhou(张瑞州), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(10): 2924-2929.
[14] Coherent population transfer in Rydberg potassium atom by a single frequency-chirped laser pulse
Zhang Xian-Zhou (张现周), Ma Qiao-Zhi (马巧枝), Li Xiao-Hong (李小红). Chin. Phys. B, 2006, 15(7): 1497-1501.
[15] Coherent population transfer in Rydberg potassium atom via stimulated Raman adiabatic passage
Zhang Xian-Zhou (张现周), Han Hui-Li (韩惠丽), Han Hong-Pei (韩红培), Fan Xiao-Wei (樊晓伟). Chin. Phys. B, 2005, 14(4): 720-724.
No Suggested Reading articles found!