|
|
Gigahertz frequency hopping in an optical phase-locked loop for Raman lasers |
Dekai Mao(毛德凯)1, Hongmian Shui(税鸿冕)1,2, Guoling Yin(殷国玲)3, Peng Peng(彭鹏)1, Chunwei Wang(王春唯)1, and Xiaoji Zhou(周小计)1,2,4,† |
1 State Key Laboratory of Advanced Optical Communication System and Network, School of Electronics, Peking University, Beijing 100871, China; 2 Institute of Carbon-based Thin Film Electronics, Peking University, Taiyuan 030012, China; 3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; 4 Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan 030031, China |
|
|
Abstract Raman lasers are essential in atomic physics, and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers. We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop (OPLL), which finds practical application in an atomic gravimeter, where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers. The method merges the advantages of rapid and extensive frequency hopping with the OPLL's inherent low phase noise, and exhibits a versatile range of applications in compact laser systems, promising advancements in portable instruments.
|
Received: 11 October 2023
Revised: 01 December 2023
Accepted manuscript online: 20 December 2023
|
PACS:
|
42.55.Ye
|
(Raman lasers)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA0718300 and 2021YFA1400900), the National Natural Science Foundation of China (Grant Nos. 11920101004, 11934002, and 92365208), Science and Technology Major Project of Shanxi (Grant No. 202101030201022), and Space Application System of China Manned Space Program. |
Corresponding Authors:
Xiaoji Zhou
E-mail: xjzhou@pku.edu.cn
|
Cite this article:
Dekai Mao(毛德凯), Hongmian Shui(税鸿冕), Guoling Yin(殷国玲), Peng Peng(彭鹏), Chunwei Wang(王春唯), and Xiaoji Zhou(周小计) Gigahertz frequency hopping in an optical phase-locked loop for Raman lasers 2024 Chin. Phys. B 33 024209
|
[1] Feng M 2002 Phys. Rev. A 66 054303 [2] Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181 [3] Galitski V and Spielman I B 2013 Nature 494 49 [4] Harris S E 1997 Physics Today 50 36 [5] Zanon T, Guerandel S, De Clercq E, Holleville D, Dimarcq N and Clairon A 2005 Phys. Rev. Lett. 94 193002 [6] Moler K, Weiss D S, Kasevich M and Chu S 1992 Phys. Rev. A 45 342 [7] Steele R C 1983 Electron. Lett. 19 69 [8] Ramos R and Seeds A J 1990 Electron. Lett. 26 389 [9] Wang Q, Wang Z, Fu Z, Liu W and Lin Q 2016 Opt. Commun. 358 82 [10] Wang Y, Li Y, Wu J, Liu W, Li P, Fu Y, Ma J, Xiao L and Jia S 2022 Front. Phys. 17 22505 [11] Johnson D M S, Hogan J M, Chiow S W and Kasevich M A 2010 Opt. Lett. 35 745 [12] Kohlhaas R, Vanderbruggen T, Bernon S, Bertoldi A, Landragin A and Bouyer P 2012 Opt. Lett. 37 1005 [13] Oon F E and Dumke R 2022 AVS Quantum Sci. 4 044401 [14] Luo Q, Zhou H, Chen L, Duan X, Zhou M and Hu Z 2022 Opt. Lett. 47 114 [15] Zhu L, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K and Holynski M 2018 Opt. Express 26 6542 [16] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D and Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627 [17] Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A and Desruelle B 2018 Sci. Rep. 8 12300 [18] Stray B, Lamb A, Kaushik A, Vovrosh J, Rodgers A, Winch J, Hayati F, Boddice D, Stabrawa A, Niggebaum A, Langlois M, Lien Y H, Lellouch S, Roshanmanesh S, Ridley K, de Villiers G, Brown G, Cross T, Tuckwell G, Faramarzi A, Metje N, Bongs K and Holynski M 2022 Nature 602 590 [19] Lee J, Ding R, Christensen J, Rosenthal R R, Ison A, Gillund D P, Bossert D, Fuerschbach K H, Kindel W, Finnegan P S, Wendt J R, Gehl M, Kodigala A, McGuinness H, Walker C A, Kemme S A, Lentine A, Biedermann G and Schwindt P D 2022 Nat. Commun. 13 5131 [20] Charriere R, Cadoret M, Zahzam N, Bidel Y and Bresson A 2012 Phys. Rev. A 85 013639 [21] Andia M, Jannin R, Nez F, Biraben F, Guellati-Khélifa S and Clade P 2013 Phys. Rev. A 88 031605 [22] Xu V, Jaffe M, Panda C D, Kristensen S L, Clark L W and Müller H 2019 Science 366 745 [23] Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S and Chu S 1991 Phys. Rev. Lett. 66 2297 [24] Peng P, Dong X, Yin G, Mao D, Xiong W and Zhou X 2023 Metrol. Meas. Technol. 43 119 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|