Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024208    DOI: 10.1088/1674-1056/ac70b0

Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam

Kang Chen(陈康)1,2, Zhi-Yuan Ma(马志远)1,2, and You-You Hu(胡友友)1,2,†
1 Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
2 Applied Optics Research Center, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Abstract  A partially coherent beam called a radially polarized multi-Gaussian Schell-model power-exponent-phase vortex beam is introduced. Both the analytical formula of the beam propagating through the high-numerical-aperture objective lens based on the vectorial diffraction theory, and the cross-spectral density matrix of the beam in the focal region are derived. Then, the tight focusing characteristics of the partially coherent radially polarized power-exponent-phase vortex beam are studied numerically, and the intensity distribution, degree of polarization and coherence of the beams in the focusing region with different topological charge, power order, beam index and coherence width are analyzed in detail. The results show that the contour of the spot becomes clearer and smoother with the increase in the beam index, and the focal fields of different structures that include the flattened beam can be obtained by changing the coherence width. In addition, by changing the topological charge and power order, the intensity can gather to a point along the ring. These unique properties will have potential applications in particle capture and manipulation, especially in the manipulation of irregular particles.
Keywords:  partially coherent beam      power-exponent-phase vortex beam      tight focusing properties  
Received:  04 February 2022      Revised:  12 May 2022      Accepted manuscript online:  18 May 2022
PACS:  42.25.Kb (Coherence)  
  42.25.Ja (Polarization)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190953).
Corresponding Authors:  You-You Hu     E-mail:

Cite this article: 

Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友) Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam 2023 Chin. Phys. B 32 024208

[1] Yang Y, Ye X and Niu L 2020 Opt. Express 28 1417
[2] Wang H G, Song Q Y, Cai Y, Lin Q G, Lu X W and Xu S X 2020 Chin. Phys. B 29 097404
[3] Xia M, Yin Y L, Pei C Y, Ye Y E, Gu R X, Yan K and Yin J P 2021 Chin. Phys. B 30 114202
[4] Zhang Y Q, Hou T Y, Chang H X, Yu T and Zhou P 2021 Opt. Express 29 5259
[5] Zhou Z H, Guo Y K and Zhu L Q. 2014 Chin. Phys. B 23 044201
[6] Li P, Liu S, Peng T, Xie G F, Gan X T and Zhao J L 2014 Opt. Express 22 7598
[7] Lao G M, Zhang Z H and Zhao D M 2016 Opt. Express 24 18082
[8] Fan C J, Liu Y X, Wang X Y, Chen Z Y and Pu J X 2018 J. Opt. Soc. Am. A 35 903
[9] Pei Z H, Huang S J, Chen Y and Yan C 2021 J. Mod. Opt. 68 224
[10] Wang J Z, Wang X G, Peng Q and Zhao S M 2021 J. Mod. Opt. 68 1
[11] Zhan Q W 2009 Adv. Opt. Photonics 1 1
[12] Hu Y Y, He X F, Liu S S, Tang X H and Li B 2017 Opt. Express 25 5186
[13] Zhang M Q, Wang J and Tian Q 2013 Chin. Phys. B 22 044202
[14] Zhou G Q, Ji Z Y, Zhou Y M and Chen R P 2018 J. Mod. Opt. 65 796
[15] Dong Y M, Wang F, Zhao C L and Cai Y J 2012 Phys. Rev. A 86 013840
[16] LI Y Q, Wu Z S, Zhang Y Y and Wang M J 2014 Chin. Phys. B 23 074202
[17] Dong M, Zhao C L, Cai Y J and Yang Y J 2021 Sci. China Phys. Mech. Astron. 64 1
[18] Chen K, Ma Z Y, Zhang M M, Dou J T and Hu Y Y 2022 Acta Phys. Sin. 71 014203 (in Chinese)
[19] Liu X L, Zeng J and Cai Y J 2019 Adv. Phys. X 4 1626766
[20] Li Y Q and Wu Z S 2012 Chin. Phys. B 21 054203
[21] Liu D J, Wang Y C, Wang G Q, Yin H M and Zhong H Y 2019 Chin Phys B 28 104207
[22] Ping C C, Liang C H, Wang F and Cai Y J 2017 Opt. Express 25 32475
[23] Zeng J, Liang C H, Wang H, Zhao C L and Cai Y J 2020 Opt. Express 28 11493
[24] Xu H F, Zhang Z, Qu J and Huang W 2016 J. Mod. Opt. 63 1429
[25] Liang C H, Zhao C C, Zhao C L, Wang K L and Cai Y J 2014 J. Opt. Soc. Am. A 31 2753
[26] Xu H F, Zhang R, Sheng Z Q and Qu J 2019 Opt. Express 27 23959
[27] Wang H Y, Wang H L, Xu Y X and Qian X M 2014 Opt. Laser Technol. 56 1
[1] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[2] Scattering of a general partially coherent beam from a diffuse target in atmospheric turbulence
Wang Li-Guo (王利国), Wu Zhen-Sen (吴振森), Wang Ming-Jun (王明军), Cao Yun-Hua (曹运华), Zhang Geng (张耿). Chin. Phys. B, 2014, 23(9): 094202.
[3] Scintillation of partially coherent Gaussian-Schell model beam propagation in slant atmospheric turbulence considering inner- and outer-scale effects
Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Zhang Yuan-Yuan (张元元), Wang Ming-Jun (王明军). Chin. Phys. B, 2014, 23(7): 074202.
[4] Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence
Li Ya-Qing(李亚清) and Wu Zhen-Sen(吴振森) . Chin. Phys. B, 2012, 21(5): 054203.
[5] Propagation of high-power partially coherent fibre laser beams in a real environment
Tao Ru-Mao(陶汝茂), Si Lei(司磊), Ma Yan-Xing(马阎星), Zou Yong-Chao(邹永超), and Zhou Pu(周朴) . Chin. Phys. B, 2011, 20(9): 094208.
[6] Propagation of partially coherent beams carrying an edge dislocation through atmospheric turbulence along a slant path
Li Jin-Hong(李晋红), Zhang Hong-Run(张洪润), and Lü Bai-Da(吕百达). Chin. Phys. B, 2010, 19(9): 099201.
[7] Consistency of the directionality of partially coherent beams inturbulence expressed in terms of the angular spread and the far-field average intensity
Chen Xiao-Wen(陈晓文) and Ji Xiao-Ling(季小玲). Chin. Phys. B, 2010, 19(2): 024203.
[8] Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence
Zhang En-Tao(张恩涛), Ji Xiao-Ling(季小玲), and Lü Bai-Da(吕百达). Chin. Phys. B, 2009, 18(2): 571-580.
[9] Design of phase plates for shaping partially coherent beams by simulated annealing
Li Jian-Long(李建龙) and LüBai-Da(吕百达). Chin. Phys. B, 2008, 17(5): 1840-1844.
[10] Coherence vortices of partially coherent beams in the far field
Liu Pu-Sheng(刘普生) and Lü Bai-da(吕百达). Chin. Phys. B, 2007, 16(2): 411-415.
[11] Fractional Fourier transform for partially coherent beam in spatial-frequency domain
Cai Yang-Jian (蔡阳健), Lin Qiang (林强). Chin. Phys. B, 2004, 13(7): 1025-1032.
No Suggested Reading articles found!