Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024207    DOI: 10.1088/1674-1056/ad028f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of sample temperature on femtosecond laser ablation of copper

Wei-Jie Dang(党伟杰)1,2, Yu-Tong Chen(陈雨桐)1,2, An-Min Chen(陈安民)1,2,†, and Ming-Xing Jin(金明星)1,2,‡
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
Abstract  We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures, and predict the changes of ablation morphology and lattice temperature. For investigating the effect of sample temperature on femtosecond laser processing, we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model. The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises. When the sample temperature rises from 300 K to 600 K, the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation, and the ablation depth increases by 20%. The simulated ablation depths follow the same general trend as the experimental values. This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.
Keywords:  femtosecond laser      two-temperature model      sample temperature      ablation depth  
Received:  18 July 2023      Revised:  11 October 2023      Accepted manuscript online:  12 October 2023
PACS:  42.62.-b (Laser applications)  
  52.38.Mf (Laser ablation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307701) and the National Natural Science Foundation of China (Grant Nos. 11674128, 11674124, and 11974138).
Corresponding Authors:  An-Min Chen, Ming-Xing Jin     E-mail:  amchen@jlu.edu.cn;mxjin@jlu.edu.cn

Cite this article: 

Wei-Jie Dang(党伟杰), Yu-Tong Chen(陈雨桐), An-Min Chen(陈安民), and Ming-Xing Jin(金明星) Effect of sample temperature on femtosecond laser ablation of copper 2024 Chin. Phys. B 33 024207

[1] Bykovskii N E, Zavedeev E V and Senatskii Y V 2015 Phys. Solid State 57 798
[2] Andre P, Abbaoui M, Augeard A, Desprez P and Singo T 2016 Plasma Chem. Plasma Process. 36 1161
[3] Bykovsky N E, Zavedeev E V, Ralchenko V G and Senatsky Y V 2015 Laser Phys. Lett. 12 056102
[4] Tarek E, Mostafa W Z, Allam R, El-Samanoudy S I and Saadi D G 2022 Lasers Surg. Med. 54 237
[5] Chung I Y, Kim J D and Kang K H 2009 Int. J. Precis. Eng. Man. 10 11
[6] Yu H, Li H, Wang Y, Cui L, Liu S and Yang J 2018 Opt. Laser Technol. 100 57
[7] Liu L, Morgan S P, Correia R and Korposh S 2022 Opt. Laser Technol. 147 107696
[8] Momeni A and Mahdieh M H 2015 Laser Phys. Lett. 12 076102
[9] Zhou R, Lin S, Ding Y, Yang H, Keng K O Y and Hong M 2018 Opto-Electron. Adv. 1 180014
[10] Singh K S and Sharma A K 2017 J. Vac. Sci. Technol. A 35 031305
[11] Farrokhi H, Gruzdev V, Zheng H and Zhou W 2019 J. Opt. Soc. Am. B 36 1091
[12] Sangines R, Sobral H and Alvarez-Zauco E 2012 Appl. Phys. B 108 867
[13] Tavassoli S H and Khalaji M 2008 J. Appl. Phys. 103 83118
[14] Hai R, He Z, Wu D, Tong W, Sattar H, Imran M and Ding H 2019 J. Anal. At. Spectrom. 34 2378
[15] Wang Y, Wang Q, Chen A and Jin M 2021 Optik 230 166338
[16] Zou Q, Li C, Ding Z, Bao Z, Zhang T, Zhang Q, Zhang L and Bi Y 2023 J. Anal. At. Spectrom. 38 429
[17] Tsai Y H, Chen B C, Ho C Y, Chiou Y J, Chen K H, Chen C S and Wen M Y 2017 Ceram. Int. 43 S573
[18] Koritsoglou O, Loison D, Uteza O and Mouskeftaras A 2022 Opt. Express 30 37407
[19] Chen M, He T and Zhao Y 2022 Opt. Laser Technol. 147 107628
[20] Ionin A A, Kudryashov S I, Seleznev L V, Sinitsyn D V, Bunkin A F, Lednev V N and Pershin S M 2013 J. Exp. Theor. Phys. 116 347
[21] Mirza I, Bulgakova N M, Tomastik J, Michalek V, Haderka O, Fekete L and Mocek T 2016 Sci. Rep. 6 39133
[22] Chen C, Zhang F, Zhang Y, Xiong X, Ju B F, Cui H and Chen Y L 2022 Appl. Surf. Sci. 576 151722
[23] Chen J K, Latham W P and Beraun J E 2002 Numer. Heat Transfer, Part B 42 1
[24] Wang M, Mei W and Wang Y 2019 Opt. Laser Technol. 113 123
[25] Xue N, Ren Y, Ren X, Ren N, Lin Q, Wang Q and Qin K 2018 Comput. Mater. Sci. 148 60
[26] Ren Y, Chen J and Zhang Y 2011 J. Appl. Phys. 110 113102
[27] Lin Z, Zhigilei L V and Celli V 2008 Phys. Rev. B 77 075133
[28] Chen J K, Tzou D Y and Beraun J E 2006 Int. J. Heat Mass Transfer 49 307
[29] Klemens P G and Williams R K 1986 Int. Mater. Rev. 31 197
[30] Xie J, Kar A, Rothenflue J A and Latham W P 1997 J. Laser Appl. 9 77
[31] Li L, Zhang D, Li Z, Guan L, Tan X, Fang R, Hu D and Liu G 2006 Physica B 383 194
[32] Hu H, Ji Y, Hu Y, Ding X, Liu X, Guo J H, Wang X L and Zhai H 2011 Chin. Phys. B 20 44204
[33] Dong Y, Wu Z, You Y, Yin C and Li X 2019 Opt. Mater. Express 9 4194
[34] Ren Y, Cheng C W, Chen J K, Zhang Y and Tzou D Y 2013 Int. J. Therm. Sci. 70 32
[35] Wu Z, Zhang N, Zhu X, An L, Wang G and Tan M 2018 Chin. Phys. B 27 077901
[36] Ujihara K 1972 J. Appl. Phys. 43 2376
[37] Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S and Qiu C W 2021 Nat. Rev. Mater. 6 488
[38] Thorstensen J and Foss S E 2012 J. Appl. Phys. 112 2248
[39] Zemaitis A, Miksys J, Gaidys M, Gecys P and Gedvilas M 2019 Mater. Res. Express 6 065309
[1] Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament
Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良). Chin. Phys. B, 2022, 31(9): 097801.
[2] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[3] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[4] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[5] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[6] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), and Hua Wu(吴华)$. Chin. Phys. B, 2020, 29(11): 114208.
[7] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[8] Etching-assisted femtosecond laser microfabrication
Monan Liu(刘墨南), Mu-Tian Li(李木天), Han Yang(杨罕), Hong-Bo Sun(孙洪波). Chin. Phys. B, 2018, 27(9): 094212.
[9] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[10] Polarization control of multi-photon absorption under intermediate femtosecond laser field
Wenjing Cheng(程文静), Pei Liu(刘沛), Guo Liang(梁果), Ping Wu(吴萍), Tianqing Jia(贾天卿), Zhenrong Sun(孙真荣), Shian Zhang(张诗按). Chin. Phys. B, 2017, 26(8): 083201.
[11] Numerical and experimental analysis of long period gratings in wavelength scale elliptical microfibers
Wa Jin(金娃), Wei-Hong Bi(毕卫红), Guang-Wei Fu(付广伟). Chin. Phys. B, 2017, 26(10): 100702.
[12] Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(6): 068103.
[13] Coulomb explosion of CS2 molecule under an intense femtosecond laser field
Xiao Wang(王潇), Jian Zhang(张健), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(5): 053301.
[14] Frequency doubled femtosecond Ti:sapphire laser with an assisted enhancement cavity
Jin-Wei Zhang(张金伟), Hai-Nian Han(韩海年), Lei Hou(侯磊), Long Zhang(张龙),Zi-Jiao Yu(于子蛟), De-Hua Li(李德华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014205.
[15] Enhancement of third harmonic generation in air filamentation using obstacles
Liu Xiao-Long (刘晓龙), Lu Xin (鲁欣), Du Zhi-Gui (杜志贵), Ma Jing-Long (马景龙), Li Yu-Tong (李玉同), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(3): 034207.
No Suggested Reading articles found!