Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124211    DOI: 10.1088/1674-1056/aceee7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system

Muhammad Saeed1 and Muqaddar Abbas2,†
1 Center for Integrated Quantum Information Technologies(IOIT), School of Physics and Astronomyand State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter(Ministry of Education), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Behavior of structure light is investigated by monitoring probe absorption using a microwave-driven Y-type atomic media configuration. The system under consideration is driven by one of the control vortex beams as well as an extra non-vortex control beam to ensure electromagnetically induced transparency. The significant aspect in the generation of structured light is the azimuthal phase-dependent modification for probe absorption. Further intensity distribution for absorption spectra is examined for simultaneously evaluating both the control vortex beams. We also go through the radial distribution of intensity for various orbital angular momentum values. Different modes of structural beams may be distinguished using the suggested approach. Our research gives us a way for rapidly transferring vortex wavefronts from control field to probe absorption profile. This could be useful in quantum information processing.
Keywords:  structure light      vortex beam  
Received:  18 June 2023      Revised:  03 August 2023      Accepted manuscript online:  10 August 2023
PACS:  42.50.-p (Quantum optics)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  34.80.Pa (Coherence and correlation)  
Corresponding Authors:  Muqaddar Abbas     E-mail:  muqaddarabbas@xjtu.edu.cn

Cite this article: 

Muhammad Saeed and Muqaddar Abbas Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system 2023 Chin. Phys. B 32 124211

[1] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[2] Safari L, Amaro P, Fritzsche S, Santos J P and Fratini F 2012 Phys. Rev. A 85 043406
[3] Safari L, Amaro P, Fritzsche S, Santos J P, Tashenov S and Fratini F 2012 Phys. Rev. A 86 043405
[4] Boller K J, Imamoglu A and Harri S E Phys 1991 Phys. Rev. Lett. 66 2593
[5] Akulshin A M, Cimmino A, Sidorov A I, Hannaford P and Opat G I 2003 Phys. Rev. A 67 011801
[6] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[7] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R and Schmidt H 2010 Nat. Photon. 4 776
[8] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Science 301 200
[9] Bajcsy M, Zibrov A S and Lukin M D 2003 Nature 426 638
[10] Hou B P, Wang S J, Yu W L and Sun W L 2004 Phys. Rev. A 69 053805
[11] Mitra S, Dey S, Hossain M M, Ghosh P N and Ray B 2013 J. Phys. B 46 075002
[12] Xiao M, Li Y Q, Jin S Z and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666
[13] Hou B P, Wang S J, Yu W L and Sun W L 2005 J. Phys. B: At. Mol. Opt. Phys. 38 1419
[14] Dutta B K and Mahapatra P K 2008 J. Phys. B: At. Mol. Opt. Phys. 41 055501
[15] Gao J Y, Yang S H, Wang D, Guo X Z, Chen K X, Jiang Y and Zhao B 2000 Phys. Rev. A 61 023401
[16] Zhang Y, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603
[17] Liu Y, Wu J, Ding D, Shi B and Guo G 2012 New J. Phys. 14 073047
[18] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[19] Dada A C, Leach J, Buller G S, Padgett M J and Andersson E 2011 Nat. Phys. 7 677
[20] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[21] Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545
[22] Friese M E J, Enger J, Rubinsztein-Dunlop H and Heckenberg N R 1996 Phys. Rev. A 54 1593
[23] Garcés-Chávez V, McGloin D, Padgett M J, Dultz W, Schmitzer H and Dholakia K 2003 Phys. Rev. Lett. 91 093602
[24] Padgett M J and Bowman R 2011 Nat. Photon. 5 343
[25] Chanu S R and Natarajan V 2013 Opt. Commun. 295 150
[26] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S and Guo G C 2015 Phys. Rev. Lett. 114 050502
[27] Dholakia K, Simpson N B, Padgett M J and Allen L 1996 Phys. Rev. A 54 R3742
[28] Courtial J, D holakia K, Allen L and Padgett M J 1997 Phys. Rev. A 56 4193
[29] Walker G, Arnold A S and Franke-Arnold S 2012 Phys. Rev. Lett. 108 243601
[30] Persuy D, M. Ziegler, Crégut O, Kheng K, Gallart M, Hönerlage B and Gilliot P 2015 Phys. Rev. B 92 115312
[31] Lavery M P, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537
[32] Fang L, Padgett M J and Wang J 2017 Laser Photon. Rev. 11 1770064
[33] Plöschner M, Tyc T and Cižmár T 2015 Nat Photon. 9 529
[34] Kozawa Y, Matsunaga D and Sato S 2018 Optica 5 86
[35] Han L, Cao M, Liu R, Liu H, Guo W, Wei D, Gao S, Zhang P, Gao H and Li F 2012 Eur. Phys. Lett. 99 34003
[36] Radwell N, Clark T W, Piccirillo B, Barnett S M and Franke-Arnold S 2015 Phys. Rev. Lett. 114 123603
[37] Sharma S and Dey T N 2017 Phys. Rev. A 96 033811
[38] Hamedi H R, Kudriašov V, Ruseckas J and Juzeliūunas G 2018 Opt. Express 26 28249
[39] Duttonand Z and Ruostekoski J 2004 Phys. Rev. Lett. 93 193602
[40] Pugatch R, Shuker M, Firstenberg O, Ron A and Davidson N 2007 Phys. Rev. Lett. 98 203601
[41] Wang T, Zhao L, Jiang L and Yelin S F 2008 Phys. Rev. A 77 043815
[42] Xie X T, Li W B and Yang X 2006 J. Opt. Soc. Am. B 23 1609
[43] Moretti D, Felinto D and Tabosa J W R 2009 Phys. Rev. A 79 023825
[44] Ruseckas J, Mekys A and Juzeliūnas G 2011 Phys. Rev. A 83 023812
[45] Ruseckas J, Kudriašov V, Yu I A and Juzeliūnas G 2013 Phys. Rev. A 87 053840
[46] Hamedi H R, Ruseckas J and Juzeliūnas G 2018 Phys. Rev. A 98 013840
[47] Ye C Y, Zibrov A S, Rostovtsev Y V and Scully M O 2002 Phys. Rev. A 65 043805
[48] Uhlenberg G, Dirscherl J and Walther H 2000 Phys. Rev. A 62 063404
[49] Noh H R and Moon H S 2011 Opt. Express 19 11128
[50] Zhang Y P, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603
[51] Ostrovsky A S, Rickenstorff-Parrao C and Arrizón V 2013 Opt. Lett. 38 534
[1] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳). Chin. Phys. B, 2023, 32(12): 124212.
[5] Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
Sheng-Jie Ma(马圣杰), Shi-Long Xu(徐世龙), Xiao Dong(董骁), Xin-Yuan Zhang(张鑫源), You-Long Chen(陈友龙), and Yi-Hua Hu(胡以华). Chin. Phys. B, 2023, 32(10): 104208.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[8] Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation
Wen-Yu Li(李文宇), Ran Sun(孙然), Jing-Yu Liu(刘靖宇), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 108701.
[9] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[10] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[11] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[14] Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷). Chin. Phys. B, 2020, 29(6): 064213.
[15] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
No Suggested Reading articles found!