ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system |
Muhammad Saeed1 and Muqaddar Abbas2,† |
1 Center for Integrated Quantum Information Technologies(IOIT), School of Physics and Astronomyand State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter(Ministry of Education), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Behavior of structure light is investigated by monitoring probe absorption using a microwave-driven Y-type atomic media configuration. The system under consideration is driven by one of the control vortex beams as well as an extra non-vortex control beam to ensure electromagnetically induced transparency. The significant aspect in the generation of structured light is the azimuthal phase-dependent modification for probe absorption. Further intensity distribution for absorption spectra is examined for simultaneously evaluating both the control vortex beams. We also go through the radial distribution of intensity for various orbital angular momentum values. Different modes of structural beams may be distinguished using the suggested approach. Our research gives us a way for rapidly transferring vortex wavefronts from control field to probe absorption profile. This could be useful in quantum information processing.
|
Received: 18 June 2023
Revised: 03 August 2023
Accepted manuscript online: 10 August 2023
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
34.80.Pa
|
(Coherence and correlation)
|
|
Corresponding Authors:
Muqaddar Abbas
E-mail: muqaddarabbas@xjtu.edu.cn
|
Cite this article:
Muhammad Saeed and Muqaddar Abbas Generation of structure light in probe absorption spectrum via microwave-driven Y-type atomic system 2023 Chin. Phys. B 32 124211
|
[1] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [2] Safari L, Amaro P, Fritzsche S, Santos J P and Fratini F 2012 Phys. Rev. A 85 043406 [3] Safari L, Amaro P, Fritzsche S, Santos J P, Tashenov S and Fratini F 2012 Phys. Rev. A 86 043405 [4] Boller K J, Imamoglu A and Harri S E Phys 1991 Phys. Rev. Lett. 66 2593 [5] Akulshin A M, Cimmino A, Sidorov A I, Hannaford P and Opat G I 2003 Phys. Rev. A 67 011801 [6] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594 [7] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R and Schmidt H 2010 Nat. Photon. 4 776 [8] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Science 301 200 [9] Bajcsy M, Zibrov A S and Lukin M D 2003 Nature 426 638 [10] Hou B P, Wang S J, Yu W L and Sun W L 2004 Phys. Rev. A 69 053805 [11] Mitra S, Dey S, Hossain M M, Ghosh P N and Ray B 2013 J. Phys. B 46 075002 [12] Xiao M, Li Y Q, Jin S Z and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666 [13] Hou B P, Wang S J, Yu W L and Sun W L 2005 J. Phys. B: At. Mol. Opt. Phys. 38 1419 [14] Dutta B K and Mahapatra P K 2008 J. Phys. B: At. Mol. Opt. Phys. 41 055501 [15] Gao J Y, Yang S H, Wang D, Guo X Z, Chen K X, Jiang Y and Zhao B 2000 Phys. Rev. A 61 023401 [16] Zhang Y, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603 [17] Liu Y, Wu J, Ding D, Shi B and Guo G 2012 New J. Phys. 14 073047 [18] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [19] Dada A C, Leach J, Buller G S, Padgett M J and Andersson E 2011 Nat. Phys. 7 677 [20] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488 [21] Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545 [22] Friese M E J, Enger J, Rubinsztein-Dunlop H and Heckenberg N R 1996 Phys. Rev. A 54 1593 [23] Garcés-Chávez V, McGloin D, Padgett M J, Dultz W, Schmitzer H and Dholakia K 2003 Phys. Rev. Lett. 91 093602 [24] Padgett M J and Bowman R 2011 Nat. Photon. 5 343 [25] Chanu S R and Natarajan V 2013 Opt. Commun. 295 150 [26] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S and Guo G C 2015 Phys. Rev. Lett. 114 050502 [27] Dholakia K, Simpson N B, Padgett M J and Allen L 1996 Phys. Rev. A 54 R3742 [28] Courtial J, D holakia K, Allen L and Padgett M J 1997 Phys. Rev. A 56 4193 [29] Walker G, Arnold A S and Franke-Arnold S 2012 Phys. Rev. Lett. 108 243601 [30] Persuy D, M. Ziegler, Crégut O, Kheng K, Gallart M, Hönerlage B and Gilliot P 2015 Phys. Rev. B 92 115312 [31] Lavery M P, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537 [32] Fang L, Padgett M J and Wang J 2017 Laser Photon. Rev. 11 1770064 [33] Plöschner M, Tyc T and Cižmár T 2015 Nat Photon. 9 529 [34] Kozawa Y, Matsunaga D and Sato S 2018 Optica 5 86 [35] Han L, Cao M, Liu R, Liu H, Guo W, Wei D, Gao S, Zhang P, Gao H and Li F 2012 Eur. Phys. Lett. 99 34003 [36] Radwell N, Clark T W, Piccirillo B, Barnett S M and Franke-Arnold S 2015 Phys. Rev. Lett. 114 123603 [37] Sharma S and Dey T N 2017 Phys. Rev. A 96 033811 [38] Hamedi H R, Kudriašov V, Ruseckas J and Juzeliūunas G 2018 Opt. Express 26 28249 [39] Duttonand Z and Ruostekoski J 2004 Phys. Rev. Lett. 93 193602 [40] Pugatch R, Shuker M, Firstenberg O, Ron A and Davidson N 2007 Phys. Rev. Lett. 98 203601 [41] Wang T, Zhao L, Jiang L and Yelin S F 2008 Phys. Rev. A 77 043815 [42] Xie X T, Li W B and Yang X 2006 J. Opt. Soc. Am. B 23 1609 [43] Moretti D, Felinto D and Tabosa J W R 2009 Phys. Rev. A 79 023825 [44] Ruseckas J, Mekys A and Juzeliūnas G 2011 Phys. Rev. A 83 023812 [45] Ruseckas J, Kudriašov V, Yu I A and Juzeliūnas G 2013 Phys. Rev. A 87 053840 [46] Hamedi H R, Ruseckas J and Juzeliūnas G 2018 Phys. Rev. A 98 013840 [47] Ye C Y, Zibrov A S, Rostovtsev Y V and Scully M O 2002 Phys. Rev. A 65 043805 [48] Uhlenberg G, Dirscherl J and Walther H 2000 Phys. Rev. A 62 063404 [49] Noh H R and Moon H S 2011 Opt. Express 19 11128 [50] Zhang Y P, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603 [51] Ostrovsky A S, Rickenstorff-Parrao C and Arrizón V 2013 Opt. Lett. 38 534 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|