Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124701    DOI: 10.1088/1674-1056/acf84d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reconstructions of time-evolving sound-speed fields perturbed by deformed and dispersive internal solitary waves in shallow water

Qin-Ran Li(李沁然)1,2, Chao Sun(孙超)1,2,3,†, Lei Xie(谢磊)1,2,‡, and Xiao-Dong Huang(黄晓冬)4,5,6
1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2 Shaanxi Key Laboratory of Underwater Information Technology, Xi'an 710072, China;
3 Qingdao Research Institute, Northwestern Polytechnical University, Qingdao 266200, China;
4 Frontier Science Center for Deep Ocean Multispheres and Earth System(FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China;
5 Key Laboratory of Ocean Observation and Information of Hainan Province and Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China;
6 Laoshan Laboratory, Qingdao 266237, China
Abstract  The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves (ISWs) are prevalent. Mapping temperatures from time series to spatial fields is an approach widely used to reproduce the sound speed perturbed by deformed internal waves. However, wave-shape distortions are inherent in the modeling results. This paper analyzes the formation mechanism and dynamic behavior of the distorted waveform that is shown to arise from the mismatch between the modeled and real propagation speeds of individual solitons within an ISW packet. To mitigate distortions, a reconstruction method incorporating the dispersion property of an ISW train is proposed here. The principle is to assign each soliton a real speed observed in the experiment. Then, the modeled solitons propagate at their intrinsic speeds, and the packet disperses naturally with time. The method is applied to reconstruct the sound speed perturbed by ISWs in the South China Sea. The mean and median of the root-mean-square error between the reconstructed and measured sound speeds are below 2 m/s. The modeled shape deformations and packet dispersion agree well with observations, and the waveform distortion is reduced compared with the original method. This work ensures the high fidelity of waveguide-environment reconstructions and facilitates the investigation of sound propagation in the future.
Keywords:  internal solitary wave      deformation      dispersion      sound speed  
Received:  06 June 2023      Revised:  20 August 2023      Accepted manuscript online:  11 September 2023
PACS:  47.35.Fg (Solitary waves)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  43.58.Dj (Sound velocity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11534009, 11904342, and 12274348). The authors would like to thank all participants working in the field experiment and the early preparations. Their great efforts contributed to the valuable data for this paper. The authors also thank the GEBCO Compilation Group (2023) GEBCO 2023 Grid (doi:10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b) for providing the bathymetry data.
Corresponding Authors:  Chao Sun, Lei Xie     E-mail:  csun@nwpu.edu.cn;xielei2014@mail.nwpu.edu.cn

Cite this article: 

Qin-Ran Li(李沁然), Chao Sun(孙超), Lei Xie(谢磊), and Xiao-Dong Huang(黄晓冬) Reconstructions of time-evolving sound-speed fields perturbed by deformed and dispersive internal solitary waves in shallow water 2023 Chin. Phys. B 32 124701

[1] Jackson C 2007 J. Geophys. Res.: Oceans 112 C11012
[2] Jackson C R, Da Silva J C and Jeans G 2012 Oceanography 25 108
[3] Apel J R, Ostrovsky L A, Stepanyants Y A and Lynch J F 2007 J. Acoust. Soc. Am. 121 695
[4] Lynch J F, Jin G, Pawlowicz R, Ray D, Plueddemann A J, Chiu C S, Miller J H, Bourke R H, Parsons A R and Muench R 1996 J. Acoust. Soc. Am. 99 803
[5] Zhou J X, Zhang X Z and Rogers P H 1991 J. Acoust. Soc. Am. 90 2042
[6] Apel J R 2003 J. Phys. Oceanogr. 33 2247
[7] Finette S, Orr M H, Turgut A, et al. 2000 J. Acoust. Soc. Am. 108 957
[8] Duncan A J, Shimizu K, Parnum I M, MacLeod R and Buchan S 2019 Proceedings of Acoustics, November 10--13, 2019, Cape Schanck, Victoria, Australia, p. 2
[9] Marshall J, Hill C, Perelman L and Adcroft A 1997 J. Geophys. Res.: Oceans 102 5733
[10] Lermusiaux P F, Xu J, Chen C F, Jan S, Chiu L Y and Yang Y J 2010 IEEE J. Ocean. Eng. 35 895
[11] Duda T F, Lin Y T, Newhall A E, Helfrich K R, Lynch J F, Zhang W G, Lermusiaux P F and Wilkin J 2019 J. Acoust. Soc. Am. 146 1996
[12] Casagrande G, Stephan Y, Varnas A C W and Folegot T 2011 IEEE J. Ocean. Eng. 36 745
[13] Chen P Q, Cheng L, Zhang T, Zhao H F and Li J L 2022 J. Acoust. Soc. Am. 152 2601
[14] Duda T F, Lin Y T and Reeder D B 2011 J. Acoust. Soc. Am. 130 1173
[15] Qu K, 453 Piao S C and Zhu F Q 2019 Acta Phys. Sin. 68 124302 (in Chinese)
[16] Jiang Y Y, Grigorev V and Katsnelson B 2022 J. Marine Sci. Eng. 10 119
[17] Rubenstein D and Brill M H 1991 Ocean Variability & Acoustic Propagation (Berlin: Springer) pp 215
[18] Sagers J D 2012 Predicting acoustic intensity fluctuations induced by nonlinear internal waves in a shallow water waveguide Ph.D. Dessertation (The University of Texas at Austin Austin)
[19] Sagers J D and Wilson P S 2016 IEEE J. Ocean. Eng. 42 231
[20] Badiey M, Wan L and Song A 2013 J. Acoust. Soc. Am. 134 EL7
[21] Frank S D, Badiey M, Lynch J F and Siegmann W L 2004 J. Acoust. Soc. Am. 116 3404
[22] Duda T F and Preisig J C 1999 IEEE J. Ocean. Eng. 24 16
[23] Gerkema T and Zimmerman J T F 2008 An Introduction to Internal Waves (Lecture Notes, Royal Netherlands Institute for Sea Research) p. 67
[24] Gill A E 1982 Atmosphere-Ocean Dynamics (San Diego: Academic Press) vol 30 p. 159
[25] Yang Y J, Fang Y C, Chang M H, Ramp S R, Kao C C and Tang T Y 2009 J. Geophys. Res.: Oceans 114 C10003
[26] Grigorev V A, Katsnelson B G and Lynch J F 2016 J. Acoust. Soc. Am. 140 3980
[27] Weatherall P, Marks K M, Jakobsson M, Schmitt T, Tani S, Arndt J E, Rovere M, Chayes D, Ferrini V and Wigley R 2015 Earth Space Sci. 2 331
[28] Yang J, Zhou S H, Zhou J X and Lynch J F 2004 IEEE J. Ocean. Eng. 29 1054
[29] Fliegel M and Hunkins K 1975 J. Phys. Oceanogr. 5 541
[30] Shaw P T, Ko D S and Chao S Y 2009 J. Geophys. Res.: Oceans 114 C02019
[31] Xie J S, He Y H and Cai S Q 2019 J. Geophys. Res.: Oceans 124 4677
[32] Chen L, Xiong X J, Zheng Q A, Yuan Y L, Yu L, Guo Y L, Yang G B, Ju X, Sun J and Hui Z L 2020 Acta Oceanol. Sin. 39 44
[1] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[2] Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn
Bo-Xi Zhang(张博熙), Ping Song(宋平), Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森). Chin. Phys. B, 2023, 32(8): 087502.
[3] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[4] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[5] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[6] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[10] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[11] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[12] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[13] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[14] Estimation of biophysical properties of cell exposed to electric field
Hui Zhang(张辉), Liyang Wang(王李阳), Peijie Zhang(张培杰), Xiaodi Zhang(张小娣), and Jun Ma(马军). Chin. Phys. B, 2021, 30(3): 038702.
[15] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
No Suggested Reading articles found!