Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 014301    DOI: 10.1088/1674-1056/ac6ee6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid

Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄)
College of Internet of Things Engineering, Hohai University, Changzhou 213022, China
Abstract  To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness, whereas the phase velocity is independent of the static permeability. There is an apparent "mode switching" between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves. This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.
Keywords:  wave propagation      porous surface layer      dispersion      attenuation  
Received:  20 March 2022      Revised:  18 April 2022      Accepted manuscript online:  12 May 2022
PACS:  43.20.+g (General linear acoustics)  
  43.30.+m (Underwater sound)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  82.33.Ln (Reactions in sol gels, aerogels, porous media)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174085) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_0478).
Corresponding Authors:  Qing-Bang Han     E-mail:  20111841@hhu.edu.cn

Cite this article: 

Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄) Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid 2023 Chin. Phys. B 32 014301

[1] Nagy B and Nayfeh H 1996 J. Acoust. Soc. Am. 100 1501
[2] Hassan W and Nagy P B 1999 J. Acoust. Soc. Am. 105 3026
[3] Ponnusamy P 2013 Int. J. Pres. Ves. Pip. 105 12
[4] Mitri F G 2015 Ultrasonics. 62 244
[5] Ahmad F 2001 J. Acoust. Soc. Am. 109 886
[6] Bhattacharyya S K and Vendhan C P 2004 J. Acoust. Soc. Am. 115 2462
[7] Ponnusamy P 2016 Adv. Appl. Math. Mech. 8 82
[8] Dutrion C and Simon F 2016 J. Sound Vib. 388 53
[9] Akbarov S D, Kocal T and Kepceler T 2016 Int. J. Solids Struct. 100 195
[10] Li Y D, Xiong T and Guan Y 2016 Ultrasonics 66 11
[11] Talebitooti R, Zarastvand M R and Gohari H D 2018 J. Vib. Control. 24 4492
[12] Talebitooti R, Zarastvand M and Darvishgohari H 2021 J. Sandw. Struct. Mater. 23 1221
[13] Zhou J, Bhaskar A and Zhang X 2015 J. Sound Vib. 357 253
[14] Gohari H D, Zarastvand M R and Talebitooti R 2020 J. Vib. Control. 26 899
[15] Biot M A 1956 J. Acoust. Soc. Am. 28 168
[16] Biot M A 1962 J. Appl. Mech. 33 1482
[17] Van Dalen K N, Drijkoningen G G and Smeulders D M J 2010 J. Acoust. Soc. Am. 127 2240
[18] Butt H S U, Xue P, Jiang T and Wang B 2015 Int. J. Mech. Sci. 91 46
[19] Rose J L 1999 Ultrasonic Waves in Solid Media (Cambridge: Cambridge University Press)
[20] Ahmed S, Shah M and Tajuddin 2010 Spec. Top. Rev. Porous. 1 67
[21] Shah S A 2015 Int. J. Appl. Mech. Eng. 20 565
[22] Wu C J, Chen H L and Huang X Q 2000 J. Sound Vib. 238 425
[23] Saxena N and Mavko G 2014 Geophysics 79 L21
[24] Tomar S K and Arora A 2006 Int. Solids Struct. 43 1991
[25] Tomar S K and Goyal S 2013 Transport Porous Med. 100 39
[26] Qiu H M, Xia T D, Yu B Q and Chen W Y 2019 J. Acoust. Soc. Am. 146 927
[27] Chao G E, Smeulders D M J and Dongen M E H V 2004 J. Acoust. Soc. Am. 116 693
[28] Brambley E J and Gabard G 2014 J. Sound Vib. 333 5548
[29] Chao G E, Smeulders D M J and Dongen M E H V 2004 J. Acoust. Soc. Am. 116 693
[30] Sinev A V, Romensky E I and Dorovsky V N 2012 Russ. Geol. Geophys. 53 823
[31] Reddy P M and Tajuddin M 2000 Int. J. Solids Struct. 37 3439
[32] Shah S A 2008 J. Sound Vib. 318 389
[33] Ervin B L and Reis H 2008 Meas. Sci. Technol. 19 055702
[34] Su N N, Han Q B and Jiang J 2019 Acta Phys. Sin. 68 084301 (in Chinese)
[35] Venkatesan M and Ponnusamy P 2007 Int. J. Mech. Sci. 49 741
[36] Ponnusamy P and Rajagopal M 2010 Eur. J. Mech. A-Solid. 29 158
[37] Nagy and Peter B 1995 J. Acoust. Soc. Am. 98 454
[38] Honarvar F, Enjilela E and Sinclair A N 2007 Int. J. Solids Struct 44 5236
[39] Dayal V 1993 J. Acoust. Soc. Am. 93 1249
[40] Rokhlin S I 1989 J. Acoust. Soc. Am. 85 1074
[41] Kubrusly A C, Arthur M and Pierre V 2016 J. Acoust. Soc. Am. 140 2412
[42] Scott J 1988 J. Sound Vib. 125 241
[43] Sarkar A and Sonti V R 2009 J. Sound Vib. 319 646
[44] Sharma J N, Sharma P K and Rana S K 2010 J. Sound Vib. 329 804
[45] Chotiros N P 2017 Acoustics of the seabed as a poroelastic medium (Switzerland: Springer Nature Press) pp. 7-24
[46] Valle C, Qu J M and Jacobs L J 1999 Int. J. Eng. Sci. 37 1369
[47] Subhani M, Li J C, Samali B and Crews K 2016 Constr. Build. Mater. 102 985
[48] Wu B, Su Y P, Liu D Y and Chen W Q 2018 J. Sound Vib. 421 17
[49] Gao Y, Liu Y and Muggleton J M 2017 Appl. Acoust. 116 43
[50] Schaap M G 2014 Soil Sci. Soc. Am. J. 70 1036
[1] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[2] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[5] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[6] An improved lumped parameter model predicting attenuation of earmuff with air leakage
Xu Zhong(仲旭), Zhe Chen(陈哲), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(11): 114301.
[7] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[8] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[9] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[10] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[11] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[12] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[13] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[14] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[15] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
No Suggested Reading articles found!