CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn |
Bo-Xi Zhang(张博熙), Ping Song(宋平)†, Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森) |
State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Out-of-plane weak ferromagnetic (OWFM) spin arrangements with topological properties can realize a series of interesting physical properties. However, this spin structure tends to exist at low temperatures. The OWFM structure can also be induced at room temperature by hydrostatic pressure, whereas this isotropic approach tends to form helical AFM structures. We report the OWFM spin arrangement in single crystal Mn3Sn by an anisotropic strategy of high-stressconstrained compression deformation at room temperature. Both experimental and theoretical simulation results show that the alignment of the OWFM spin structure is due to the distortion of the atomic scale caused by the strain energy during deformation. The OWFM spin arrangement can significantly change the magnetic property of Mn3Sn. As a result, the remanent magnetization Mr for the deformed sample (0.056 μB/f.u.) is about eleven times that for the pre-deformed sample (0.005 μB/f.u.), and the coercivity (Hc) increases from 0 kOe (pre-deformed sample) to 6.02 kOe (deformed sample). Our findings provide a way to generate the OWFM spin structure at room temperature and may give fresh ideas for creating antiferromagnetic materials with excellent physical properties.
|
Received: 20 January 2023
Revised: 23 March 2023
Accepted manuscript online:
|
PACS:
|
75.47.Np
|
(Metals and alloys)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
Fund: This work was supported by the National Natural Science Foundation of China(Grant Nos.52101233 and 52071279), the Hebei Natural Science Foundation(Grant No.E2022203010), the China Postdoctoral Science Foundation (Grant No.2022M712685),and the Innovation Capability Improvement Project of Hebei Province (Grant No.22567605H). |
Cite this article:
Bo-Xi Zhang(张博熙), Ping Song(宋平), Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森) Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn 2023 Chin. Phys. B 32 087502
|
[1] Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T and Nakatsuji S 2017 Nat. Mater. 16 1090 [2] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [3] Ikeda T, Tsunoda M, Oogane M, Oh S, Morita T and Ando Y 2018 Appl. Phys. Lett. 113 222405 [4] Higo T, Qu D, Li Y, Chien C L, Otani Y and Nakatsuji S 2018 Appl. Phys. Lett. 113 202402 [5] You Y, Chen X, Zhou X, Gu Y, Zhang R, Pan F and Song C 2019 Adv. Electron. Mater. 5 1800818 [6] Zhang Y, Sun Y, Yang H, Železný J, Parkin S P P, Felser C and Yan B 2017 Phys. Rev. B 95 075128 [7] Rout P K, Madduri P V P, Manna S K and Nayak A K 2019 Phys. Rev. B 99 094430 [8] Guo G Y and Wang T C 2017 Phys. Rev. B 96 224415 [9] Li X, Xu L, Ding L, Wang J, Shen M, Lu X, Zhu Z and Behnia K 2017 Phys. Rev. Lett. 119 056601 [10] Zhou X, Song B, Chen X, You Y, Ruan S, Bai H, Zhang W, Ma G, Yao J, Pan F, Jin Z and Song C 2019 Appl. Phys. Lett. 115 182402 [11] Higo T, Man H, Gopman D B, Wu L, Koretsune T, van't Erve O M J, Kabanov Y P, Rees D, Li Y, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J and Nakatsuji S 2018 Nat. Photon. 12 73 [12] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 [13] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391 [14] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26 [15] Tonouchi M 2007 Nat. Photon. 1 97 [16] Nagamiya T 1979 J. Phys. Soc. Jpn. 46 787 [17] Tomiyoshi S and Yamaguchi Y 1982 J. Phys. Soc. Jpn. 51 2478 [18] Tomiyoshi S, Abe S, Yamaguchi Y, Yamauchi H and Yamamoto H 1986 J. Magn. Magn. Mater. 54 1001 [19] Muduli P K, Higo T, Nishikawa T, Qu D, Isshiki H, Kondou K, Nishio-Hamane D, Nakatsuji S and Otani Y 2019 Phys. Rev. B 99 184425 [20] Sung N H, Ronning F, Thompson J D and Bauer E D 2018 Appl. Phys. Lett. 112 132406 [21] Lingannan G, Singh A K, Joseph B, Singh S and Arumugam S 2021 Phys. Status Solidi RRL 15 2000605 [22] Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K and Nayak A K 2020 Phys. Rev. Res. 2 043366 [23] Deng J J, Zhao M Y, Wang Y, Wu X, Niu X T, Ma L, Zhao D W, Zhen C M and Hou D L 2022 J. Phys. D: Appl. Phys. 55 275001 [24] Song P, Yao S, Zhang B, Jiang B, Deng S, Guo D, Ma L and Hou D 2022 Appl. Phys. Lett. 120 192401 [25] Tachibana M 2017 Beginner's Guide to Flux Crystal Growth (Tokyo: Springer) pp. 9-20 [26] Wei P T, Lu C, Tieu K, Su L H, Deng G Y and Huang W B 2017 Mater. Sci. Eng. A 684 239 [27] Hong W, Liu L, Liu C, Ma X, Koda A, Li X, Song J, Yang W, Yang J, Cheng P, Zhang H, Bao W, Ma X, Chen D, Sun K, Guo W, Luo H, Sandvik A W and Li S 2021 Phys. Rev. Lett. 126 037201 [28] Hou Y S, Xiang H J and Gong X G 2015 Sci. Rep. 5 13159 [29] Kandra J T, Lee J Y and Pope D P 1991 Mater. Sci. Eng. A 145 189 [30] Park P, Oh J, Uhlířová K, Jackson J, Deák A, Szunyogh L, Lee K H, Cho H, Kim H L, Walker H C, Adroja D, Sechovsky V and Park J G 2018 npj Quantum Mater. 3 63 [31] Dasgupta S 2022 Phys. Rev. B 106 064431 [32] Li X, Lou L, Song W, Huang G, Hou F, Zhang Q, Zhang H T, Xiao J, Wen B and Zhang X Y 2017 Adv. Mater. 29 1606430 [33] Huang G, Li X, Lou L, Hua Y, Zhu G, Li M, Zhang H T, Xiao J, Wen B, Yue M and Zhang X Y 2018 Small 14 1800619 [34] Zhang X Y 2020 Mater. Res. Lett. 8 49 [35] Li X, Lou L, Song W, Zhang Q, Huang G, Hua Y, Zhang H T, Xiao J, Wen B and Zhang X Y 2017 Nano Lett. 17 2985 [36] Lou L, Li Y, Li X, Li H, Li W, Hua Y, Xia W, Zhao Z, Zhang H, Yue M and Zhang X Y 2021 Adv. Mater. 33 2102800 [37] Zhang H T and Zhang X Y 2022 Mater. Res. Lett. 10 1 [38] Liu Y, Xu L, Wang Q, Li W and Zhang X Y 2009 Appl. Phys. Lett. 94 172502 [39] Li W, Li L, Nan Y, Li X, Zhang X Y, Gunderov D V, Stolyarov V V and Popov A G 2007 Appl. Phys. Lett. 91 062509 [40] Li H, Lou L, Hou F, Guo D, Li W, Li X, Gunderov D V, Sato K and Zhang X Y 2013 Appl. Phys. Lett. 103 142406 [41] Li W, Li L L, Nan Y, Xu Z, Zhang X Y, Popov A G, Gunderov D V and Stolyarov V V 2008 J. Appl. Phys. 104 023912 [42] Zhang H T, Zhang T and Zhang X Y 2023 Adv. Sci. 10 2300193 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|