Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038702    DOI: 10.1088/1674-1056/abc543
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Estimation of biophysical properties of cell exposed to electric field

Hui Zhang(张辉)1, Liyang Wang(王李阳)2, Peijie Zhang(张培杰)3, Xiaodi Zhang(张小娣)1, and Jun Ma(马军)4,
1 College of Physics & Electronic Engineering, Xianyang Normal University, Xianyang 712000, China; 2 College of Life Science, Shaanxi Normal University, Xi'an 710062, China; 3 School of Highway, Chang'an University, Xi'an 710064, China; 4 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  Excitable media, such as cells, can be polarized and magnetized in the presence of an external electromagnetic field. In fact, distinct geometric deformation can be induced by the external electromagnetic field, and also the capacitance of the membrane of cell can be changed to pump the field energy. Furthermore, the distribution of ion concentration inside and outside the cell can also be greatly adjusted. Based on the theory of bio-electromagnetism, the distribution of field energy and intracellular and extracellular ion concentrations in a single shell cell can be estimated in the case with or without external electric field. Also, the dependence of shape of cell on the applied electronic field is calculated. From the viewpoint of physics, the involvement of external electric field will change the gradient distribution of field energy blocked by the membrane. And the intracellular and extracellular ion concentration show a certain difference in generating time-varying membrane potential in the presence of electric field. When a constant electric field is applied to the cell, distinct geometric deformation is induced, and the cell triggers a transition from prolate to spherical and then to oblate ellipsoid shape. It is found that the critical frequency in the applied electric field for triggering the distinct transition from prolate to oblate ellipsoid shape obtains smaller value when larger dielectric constant of the cell membrane and intracellular medium, and smaller conductivity for the intracellular medium are used. Furthermore, the effect of cell deformation is estimated by analyzing the capacitance per unit area, the density of field energy, and the change of ion concentration on one side of cell membrane. The intensity of external applied electric field is further increased to detect the change of ion concentration. And the biophysical effect in the cell is discussed. So the deformation effect of cells in electric field should be considered when regulating and preventing harm to normal neural activities occurs in a nervous system.
Keywords:  neuron      field energy      membrane deformation      ion concentration  
Received:  23 August 2020      Revised:  04 October 2020      Accepted manuscript online:  28 October 2020
PACS:  87.19.ll (Models of single neurons and networks)  
  94.30.Kq (Electric fields, field-aligned currents and current systems, and ring currents)  
Corresponding Authors:  Corresponding author. E-mail: hyperchaos@163.com   

Cite this article: 

Hui Zhang(张辉), Liyang Wang(王李阳), Peijie Zhang(张培杰), Xiaodi Zhang(张小娣), and Jun Ma(马军) Estimation of biophysical properties of cell exposed to electric field 2021 Chin. Phys. B 30 038702

1 Niu Z Q, Wang H B, Hou J Q, Yan J and Lu Z Y 2002 Chin. J. Biomed. Eng. 21 552
2 J Zhang J, Jeffery D Z, Tan W C and Lin H 2013 Phys. Fluids 25 071903
3 Kummrow M and Helfrich W 1991 Phys. Rev. A 44 8356
4 Wong P K, Tan W and Ho C M 2005 J. Biomech. 38 529
5 Izhikevich E M 2003 IEEE Trans. Neur. Networks 14 1569
6 Burkitt N 2006 Biological Cybernetics 95 1
7 Longtin A 1997 Phys. Rev. E 55 868
8 Ibarz B, Casado J M and Sanjuan M A 2011 Phys. Rep. 501 1
9 Kepler T B, Abbott L F and Marder E 1992 Biological Cybernetics 66 381
10 Kasabov N 2010 Neural Networks 23 16
11 Wei H, Bu Y J and Dai D W 2017 Cognitive Neurodynamics 11 415
12 Lin H R, Wang C H, Sun Y C and Yao W 2020 Nonlinear Dyn. 100 3667
13 Hu X Y and Liu C X 2019 Nonlinear Dyn. 97 1721
14 Heidarpur M, Ahmadi A and Kandalaft N 2017 Nonlinear Dyn. 89 2259
15 Du M M, Li J J and Yuan Z X 2020 Chin. Phys. B 29 038701
16 Tang J, Zhang J and Ma J 2017 Sci. China-Technol. Sci. 60 1011
17 Ma J, Yang Z Q, Yang L J and Tang J 2019 Journal of Zhejiang University-Science A (Applied Physics & Engineering) 20 639
18 Yuan Z X, Feng P H, Du M M and Wu Y 2020 Chin. Phys. B 29 030504
19 Lu L, Jia Y, Xu Y, Xu Y, Ge M Y, Yang L J and Zhan X 2019 Sci. China-Technol. Sci. 62 427
20 Wang Z L and Shi X R 2020 Cognitive Neurodynamics 14 115
21 Mondal A, Upadhyay R K, Ma J, Yadav B K Sharma S K and Mondal A 2019 Cognitive Neurodynamics 13 393
22 Liu Y, Xu W J and Ma J, Alzahrani F and Hobiny A 2020 Frontiers of Information Technology & Electronic Engineering 21 1387
23 Xu Y, Liu M H and Ma J 2020 Chin. Phys. B 29 098704
24 Xu Y, Guo Y Y, Ren G D and Ma J 2020 Appl. Math. Comput. 385 125427
25 Ma J, Zhang G, Hayat T and Ren G D 2019 Nonlinear Dyn. 95 1585
26 Yan B, Panahi S, He S B and Jafari S 2020 Nonlinear Dyn. 101 521
27 Yao M Q and Wang R B 2019 Cognitive Neurodynamics 13 293
28 Zhu F Y, Wang R B, Pan X C and Zhu Z Y 2019 Cognitive Neurodynamics 13 75
29 Wang Y H, Xu X Y and Wang R B 2020 Cognitive Neurodynamics
30 Wu F Q, Ma J and Zhang G 2020 Sci. China-Technol. Sci. 63 625
31 Wang C N, Tang J and Ma J 2019 Eur. Phys. J. Special Topics 228 1907
32 Wang C N and Ma J 2018 Int. J. Mod. Phys. B 32 1830003
33 Schaw H P 1957 Adv. Biol. Med. Phys. 5 147
34 Frieske H and Mahning M 1973 Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences 28 693
35 Helfrich W 1974 Zeitschrift f\"ur Naturforschung C 29 182
36 Harbich W and Helfrich W 1979 Zeitschrift f\"ur Naturforschung A 34 1063
37 Hyuga H, Kinosita K and Wakabayashi N 1993 Bioelectrochemistry and Bioenergetics 32 15
38 Aranda S, Riske K A, Lipowsky R and Rumiana D 2008 Biophys. J. 95 l19
39 Vlahovska P M, Graci\`a R S, Aranda-Espinoza S and Rumiana D 2009 Biophys. J. 96 4789
40 Yamamoto T, Espinoza S A, Dimova R and Lipowsky R 2010 Langmuir 26 12390
41 Peterlin P 2010 J. Biolog. Phys. 36 339
42 Salipante P F and Vlahovska P M 2014 Soft Matter 10 3386
43 Mcconnell L C, Vlahovska, P M and Miksis M J 2015 Soft Matter 11 4840
44 Sinhaa K P and Thaokarb R M 2019 J. Phys.: Condens. Matter 31 035101
45 Hiroyuki H, Kinosita K and Wakabayashi N 1991 Jpn. J. Appl. Phys. 30 2649
46 Peterlin P, Svetina S and \vZeks B 2007 J. Phys.: Condens. Matter 16 136220
47 Tang Y G, Liu Y and Yang Q S 2013 Theor. Appl. Mech. Lett. 3 054010
48 Sinha K P and Thaokar R M 2018 Phys. Rev. E 97 032404
49 McConnell L C, Miksis M J and Vlahovska P M 2013 IMA J. Appl. Math. 78 797
50 Mcconnell L C, Vlahovska P M and Miksis M J 2015 Soft Matter 11 4840
51 Li J X and Niu Z Q Zhang H, Wang L Y, Zhang P J Zhang X D and Ma J \hrefhttp://dx.doi.org/10.1360/N092017-00266 2018 Scientia Sinica Technologica 48 783
53 Zhang B, Xie Y L and Chen L 2020 Bioelectromagnetics 41 263
54 Zhang H, Xu J D and Niu Z Q2007 J. Biomed. Eng. 24 257
55 Zhang H, Xu J D, Niu Z Q, Gu W T and Li Z L 2004 Chin. J. Med. Phys. 21 179
56 Zhang H, Xu J D, Niu Z Q and Xu Z X 2007 Chin. J. Med. Phys. 24 189
57 Zhang H, Zhang X D and Zhang S R Journal of Clinical Rehabilitative Tissue Engineering Research 12 643
58 Ko Y T C, Huang J P and Yu K W 2004 J. Phys.: Condens. Matter 16 499
59 Barnes F S and Hu C L J 1977 IEEE Trans. Microw. Theor. Techniq. 25 742
60 Kotnik T and Miklavcic D 2000 Bioelectromagnetics 21 385
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[3] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[4] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[5] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[6] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[7] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[8] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[9] Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability
Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光). Chin. Phys. B, 2022, 31(7): 070506.
[10] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[11] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[12] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[13] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[14] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[15] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
No Suggested Reading articles found!