Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077801    DOI: 10.1088/1674-1056/abf0fb

Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation

Xiaowei Lu(陆小微)1, Congying Wang(王聪颖)1, Xuanke Zeng(曾选科)1, Jiahe Lin(林家和)1, Yi Cai(蔡懿)1,†, Qinggang Lin(林庆钢)1, Huangcheng Shangguan(上官煌城)1, Zhenkuan Chen(陈振宽)1,2, Shixiang Xu(徐世祥)1, and Jingzhen Li(李景镇)1
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
2 Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology(Ministry of Education), Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Abstract  We propose a kind of spectral polarization-encoding (SPE) for broadband light pulses, which is realized by inducing optical rotatory dispersion (ORD), and decoded by compensating ORD. Combining with polarization-sensitive devices, SPE can not only work to control polarization-dependent transmission for central wavelength or bandwidth-tunable filtering, but also can be used for broadband regenerative or multi-pass amplification with a polarization-dependent gain medium to improve output bandwidth. SPE is entirely passive thus very simple to be designed and aligned. By using an ORD crystal with a good transmission beyond 3-μm mid-infrared region, e.g., AgGaS2, SPE promises to be applied for the wavelength tuning lasers in mid-infrared region, where the tunning devices are rather under developed compared with those in visible and near-infrared region.
Keywords:  ultrafast optics      optical rotatory dispersion      spectral polarization-encoding      spectral manipulation  
Received:  08 February 2021      Revised:  04 March 2021      Accepted manuscript online:  23 March 2021
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  42.25.Ja (Polarization)  
  42.79.-e (Optical elements, devices, and systems)  
  42.60.-v (Laser optical systems: design and operation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92050203, 62075138, 61827815, and 61775142) and Shenzhen Fundamental Research Project (Grant Nos. JCYJ20190808164007485, JCYJ20190808121817100, JSGG20191231144201722, and JCYJ20190808115601653).
Corresponding Authors:  Yi Cai     E-mail:

Cite this article: 

Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇) Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation 2021 Chin. Phys. B 30 077801

[1] Sun S, Li M, Tang J, Zhu N, Ahn T and Azaña J 2016 Opt. Express 24 7943
[2] Zohreh L, Valentina C, Karsten R, Michael G and Christophe P 2015 Fiber Integrated Opt. 34 23
[3] Salem R, Foster M A and Gaeta A L 2013 Adv. Opt. Photon. 5 274
[4] David C, Pedro A and Enrique S 2013 Opt. Express 21 28550
[5] Stoll T, Maioli P, Crut A, Fatti N D and Vallée F 2014 Eur. Phys. J. B 87 260
[6] Suzuki T, Hida R, Isa F, Ueda R and Kannari F 2016 Imaging and Applied Optics IW1E.3
[7] Zhang J, Zhang W and Yao J 2015 J. Lightwave Technol. 33 4622
[8] Yang J, Zhou W, Dong D, Zhang Z, Lao Da, Ji R and Wang D 2016 Proc. SPIE 9903 990307
[9] Zhang Z, Balskus K, McCracken R A and Reid D T 2015 Opt. Lett. 40 2692
[10] Mishra A, Karni O and Eisenstein G 2015 Opt. Express 23 29940
[11] Pálfalvi L, Ollmann Z, Tokodi L and Hebling J 2016 Opt. Express 24 8156
[12] Jovanovic I, Ebbers C A and Barty C P J 2002 Opt. Lett. 27 1622
[13] Chu Y, Gan Z, Liang X, Yu L, Lu X, Wang C, Wang X, Xu L, Lu H, Yin D, Leng Y, Li Rand Xu Z 2015 Opt. Lett. 40 5011
[14] Frumker E and Silberberg Y 2007 Opt. Lett. 32 1384
[15] García-Muñoz V, Preciado M A and Muriel M A 2007 Opt. Express 15 10878
[16] Aoyama M, Yamakawa K, Akahane Y, Ma J, Inoue N, Ueda H and Kiriyama H 2003 Opt. Lett. 28 1594
[17] Antonuccia L, Rousseaua J P, Julliena A, Merciera B, Laudeb V and Cheriauxa G 2009 Opt. Commun. 282 1374
[18] Leng Y, Lin L, Wang W, Jiang Y, Tang B and Xu Z 2003 Opt. Fiber Technol. 35 425
[19] Oksenhendler T, Kaplan D, Tournois P, Greetham G M and Estable F 2006 Appl. Phys. B 83 491
[20] Moulton P F 1986 J. Opt. Soc. Am. B 3 125
[21] Zheng S, Cai Y, Zeng X, Zheng G, Lu X, Li J and Xu S 2015 Laser Phys. Lett. 12 085301
[22] Zheng S, Zeng X, Pan X, Li J, Cai Y, Zheng G and Xu S 2016 Opt. Laser Eng. 78 86
[23] Kalashnikov M, Cao H, Osvay K and Chvykov V 2016 Opt. Lett. 41 25
[24] Wang X, Lu X, Xu Y, Wang C, Li S, Yu L, Liu X, Liu K, Xu R and Leng Y 2018 Appl. Phys. Express 11 062701
[1] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[2] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[3] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[4] Frequency dependence of quantum path interference in non-collinear high-order harmonic generation
Shi-Yang Zhong(钟诗阳), Xin-Kui He(贺新奎), Hao Teng(滕浩), Peng Ye(叶蓬), Li-Feng Wang(汪礼锋), Peng He(何鹏), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(2): 023301.
No Suggested Reading articles found!