Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 106104    DOI: 10.1088/1674-1056/acb41f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation

Yin-Chuan Sha(沙银川)1,†, Ze-Wen Li(李泽文)1,†‡, Zhi-Chao Jia(贾志超)2, Bing Han(韩冰)3, and Xiao-Wu Ni(倪晓武)1
1 School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;
2 School of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, China;
3 School of Electronic Engineering and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device. A three-dimensional finite element numerical model based on Fourier's heat conduction equation, Hooke's law and the Alexander-Hasson equation was developed to analyze the thermal stress damage mechanism involved. The damage morphology of the ablated samples was observed using an optical microscope. The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium. Fracture is the result of a combination of thermal stress and reduction in local yield strength.
Keywords:  thermal stress      single-crystal germanium      fracture      damage mechanism  
Received:  16 June 2022      Revised:  13 January 2023      Accepted manuscript online:  18 January 2023
PACS:  61.82.Fk (Semiconductors)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  61.80.-x (Physical radiation effects, radiation damage)  
  52.38.Mf (Laser ablation)  
Corresponding Authors:  Ze-Wen Li     E-mail:  lizewen.njust@gmail.com

Cite this article: 

Yin-Chuan Sha(沙银川), Ze-Wen Li(李泽文), Zhi-Chao Jia(贾志超), Bing Han(韩冰), and Xiao-Wu Ni(倪晓武) Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation 2023 Chin. Phys. B 32 106104

[1] Yang D, Zhang G, Lai R, Cheng Y, Lian Y, Rao M, Huo D, Lan D, Zhao B and Di D 2021 Nat. Commun. 12 1
[2] Tao J, Tao Z and Zhihong L 2021 Journal of Cleaner Production 294 126217
[3] Yang Z, Ren X, Song Y, Li X, Zhang C, Hu X, He J, Li J and Huang C 2023 Energy & Environmental Materials 6 e12269
[4] Zhu H, Zhang Z, Xu J, Ren Y, Zhu Z, Xu K, Wang Z and Wang C 2021 Journal of Manufacturing Processes 69 351
[5] Geng R, Yang X, Xie Q, Xiao J, Zhang W and Li R 2021 Infrared Physics & Technology 116 103773
[6] Zhu H, Zhang Z, Xu J, Xu K and Ren Y 2018 Precision Engineering 54 154
[7] Zheng Y, Yi T C, Wang J L, Xiao P F and Wang R 2017 Chin. Phys. Lett. 34 026101
[8] Liu X N, Dai L H, Ning B X and Zou S C 2017 Chin. Phys. Lett. 34 016103
[9] Choi S and Jhang K Y 2014 Opt. Lett. 39 4278
[10] Choi S and Jhang K Y 2014 Current Applied Physics 14 843
[11] Li Z, Zhou J, Zhang H, Shen Z, Lu J and Ni X 2015 Third international symposium on laser interaction with matter Vol. 9543 pp. 29-36
[12] Wang X, Qin Y, Wang B, Zhang L, Shen Z, Lu J and Ni X 2011 Appl. Opt. 50 3725
[13] Jia Z, Li Z, Lv X and Ni X 2017 Appl. Opt. 56 4900
[14] Jia Z, Wang W, Li X and Hao L 2021 Opt. Engineering 60 097101
[15] Li Z, Zhang H, Shen Z and Ni X 2013 J. Appl. Phys. 114 033104
[16] Li Z, Wang X, Shen Z, Lu J and Ni X 2012 Appl. Opt. 51 2759
[17] Li B H, Shen Z H, Lu J and Ni X W 2017 Fourth international symposium on laser interaction with matter Vol. 10173 (SPIE) pp. 12-7
[18] Mosavat M and Rahimi A 2019 Appl. Opt. 58 1569
[19] Zhou J, Jiao H, Huang Y, Zhao Y, Liu Q, Long Y, Zhong Z and Bao J 2021 Opt. Commun. 488 126745
[20] Banos N, Friedrich J and Müller G 2008 Journal of Crystal Growth 310 501
[21] Alexander H and Haasen P 1969 Solid State Physics Vol. 22 (Elsevier) pp. 27-158
[22] Gao B, Nakano S and Kakimoto K 2013 Journal of Crystal Growth 369 32
[23] Ryningen B, Stokkan G, Kivambe M, Ervik T and Lohne O 2011 Acta Materialia 59 7703
[24] Kivambe M M, Stokkan G, Ervik T, Ryningen B and Lohne O 2011 J. Appl. Phys. 110 063524
[25] Stokkan G, Hu Y, Mjos O and Juel M 2014 Solar Energy Materials and Solar Cells 130 679
[26] Sha Y, Jia Z, Li Z, Pan Y, Nan P and Ni X 2020 Appl. Opt. 59 6803
[1] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[2] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[3] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[4] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[5] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
[6] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[7] Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇). Chin. Phys. B, 2020, 29(12): 128101.
[8] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[9] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
[10] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[11] Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor
Yu Xin-Hai (于新海), Chai Chang-Chun (柴常春), Liu Yang (刘阳), Yang Yin-Tang (杨银堂), Xi Xiao-Wen (席晓文). Chin. Phys. B, 2015, 24(4): 048502.
[12] Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes
Yang Jian-Qun (杨剑群), Li Xing-Ji (李兴冀), Liu Chao-Ming (刘超铭), Ma Guo-Liang (马国亮), Gao Feng (高峰). Chin. Phys. B, 2015, 24(11): 116103.
[13] Application of thermal stress model to paint removal by Q-switched Nd:YAG laser
Zou Wan-Fang (邹万芳), Xie Ying-Mao (谢应茂), Xiao Xing (肖兴), Zeng Xiang-Zhi (曾祥志), Luo Ying (罗颖). Chin. Phys. B, 2014, 23(7): 074205.
[14] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[15] Size-dependent thermal stresses in the core–shell nanoparticles
Astefanoaei I, Dumitru I, Stancu Al. Chin. Phys. B, 2013, 22(12): 128102.
No Suggested Reading articles found!