Special Issue:
SPECIAL TOPIC — Twistronics
|
|
|
Correlated insulating phases in the twisted bilayer graphene |
Yuan-Da Liao(廖元达)1,2, Xiao-Yan Xu(许霄琰)3, Zi-Yang Meng(孟子杨)4,1,5,†, and Jian Kang(康健)6,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Department of Physics, University of California at San Diego, La Jolla, California 92093, USA; 4 Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China; 6 School of Physical Science and Technology & Institute for Advanced Study, Soochow University, Suzhou 215006, China |
|
|
Abstract We review analytical and numerical studies of correlated insulating states in twisted bilayer graphene, focusing on real-space lattice models constructions and their unbiased quantum many-body solutions. We show that by constructing localized Wannier states for the narrow bands, the projected Coulomb interactions can be approximated by interactions of cluster charges with assisted nearest neighbor hopping terms. With the interaction part only, the Hamiltonian is SU(4) symmetric considering both spin and valley degrees of freedom. In the strong coupling limit where the kinetic terms are neglected, the ground states are found to be in the SU(4) manifold with degeneracy. The kinetic terms, treated as perturbation, break this large SU(4) symmetry and propel the appearance of intervalley coherent state, quantum topological insulators, and other symmetry-breaking insulating states. We first present the theoretical analysis of moir\'e lattice model construction and then show how to solve the model with large-scale quantum Monte Carlo simulations in an unbiased manner. We further provide potential directions such that from the real-space model construction and its quantum many-body solutions how the perplexing yet exciting experimental discoveries in the correlation physics of twisted bilayer graphene can be gradually understood. This review will be helpful for the readers to grasp the fast growing field of the model study of twisted bilayer graphene.
|
Received: 23 September 2020
Revised: 18 November 2020
Accepted manuscript online: 02 December 2020
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
73.21.Cd
|
(Superlattices)
|
|
73.22.Gk
|
(Broken symmetry phases)
|
|
Fund: YDL and ZYM acknowledge support from the National Key Research and Development Program of China (Grant No. 2016YFA0300502) and the Research Grants Council of Hong Kong SAR China (Grant Nos. 17303019 and 17301420). JK is supported by Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China. |
Corresponding Authors:
†Corresponding author. E-mail: zymeng@hku.hk ‡Corresponding author. E-mail: jkang@suda.edu.cn
|
Cite this article:
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健) Correlated insulating phases in the twisted bilayer graphene 2021 Chin. Phys. B 30 017305
|
1 Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 2 Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 3 Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E,Jarillo-Herrero P 2018 Nature 556 43 4 Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys.16 520 5 Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A,Kim P 2020 Nature 583 221 6 Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T,Jarillo-Herrero P 2020 Nature 583 215 7 Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, et al. Nature 579 56 8 Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, et al. 2019 Nature 572 95 9 Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P,Ashoori R C 2019 Phys. Rev. Lett. 123 046601 10 Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, et al. 2019 Nature 574 653 11 Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2019 Nature 572 101 12 Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91 13 Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 582 198 14 Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, Oppen v F, Stern A, et al. 2020 Nature 582 203 15 Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F Nat. Phys. 16 926 16 Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375 17 Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, et al. 2019 Nature Physics 15 237 18 Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, et al. 2019 Nature 572 215 19 Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001 20 Kang J and Vafek O 2018 Phys. Rev. X 8 031088 21 Koshino M, Yuan N. F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087 22 Yuan N. F Q and Fu L 2018 Phys. Rev. B 98 045103 23 Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089 24 Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001 25 Ochi M, Koshino M and Kuroki K 2018 Phys. Rev. B 98 081102 26 Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154 27 Guo H, Zhu X, Feng S and Scalettar R T 2018 Phys. Rev. B 97 235453 28 Isobe H, Yuan N. F Q and Fu L 2018 Phys. Rev. X 8 041041 29 Venderbos J. W F and Fernandes R M 2018 Phys. Rev. B 98 245103 30 Guinea F and Walet N R 2018 Proc. Natl. Acad. Sci. USA 115 13174 31 Liu J, Liu J and Dai X 2019 Phys. Rev. B 99 155415 32 Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 33 Cea T, Walet N R and Guinea F 2019 Phys. Rev. B 100 205113 34 Tang Q K, Yang L, Wang D, Zhang F C and Wang Q H 2019 Phys. Rev. B 99 094521 35 Gonzàlez J and Stauber T 2019 Phys. Rev. Lett. 122 026801 36 Kang J and Vafek O 2019 Phys. Rev. Lett. 122 246401 37 Seo K, Kotov V N and Uchoa B 2019 Phys. Rev. Lett. 122 246402 38 Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127 39 Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P and Vishwanath A 2019 Nat. Commun. 10 1 40 Wu F and Das Sarma S 2020 Phys. Rev. Lett. 124 046403 41 Wu X C, Keselman A, Jian C M, Pawlak K A and Xu C 2019 Phys. Rev. B 100 024421 42 Bultinck N, Chatterjee S and Zaletel M P 2020 Phys. Rev. Lett. 124 166601 43 Liu S, Khalaf E, Lee J Y and Vishwanath A arXiv:1905.07409 44 Alavirad Y and Sau J D arXiv:1907.13633 45 Chatterjee S, Bultinck N and Zaletel M P 2020 Phys. Rev. B 101 165141 46 Chichinadze D V, Classen L and Chubukov A V 2020 Phys. Rev. B 101 224513 47 Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A and Zaletel M P 2020 Phys. Rev. X 10 031034 48 Liu J and Dai X arXiv:1911.03760 49 Fernandes R M and Venderbos J W 2020 Sci. Adv. 6 eaba8834 50 Zhang Y, Jiang K, Wang Z and Zhang F 2020 Phys. Rev. B 102 035136 51 Repellin C, Dong Z, Zhang Y H and Senthil T 2020 Phys. Rev. Lett. 124 187601 52 Liu J and Dai X 2020 npj Computational Materials 6 57 53 Roy B and Juri\vci\'c V 2019 Phys. Rev. B 99 121407 54 Wolf T. M R, Lado J L, Blatter G and Zilberberg O 2019 Phys. Rev. Lett. 123 096802 55 Gonzalez-Arraga L A, Lado J L, Guinea F and San-Jose P 2017 Phys. Rev. Lett. 119 107201 56 Angeli M, Mandelli D, Valli A, Amaricci A, Capone M, Tosatti E and Fabrizio M 2018 Phys. Rev. B 98 235137 57 Angeli M, Tosatti E and Fabrizio M 2019 Phys. Rev. X 9 041010 58 Arora H S, Polski R, Zhang Y, Thomson A and Nadj-Perge S 2020 Nature 583 379 59 Irkhin, Yu V, Skryabin and Yu N 2020 JETP Lett. 111 230 60 Irkhin, Yu V, Skryabin and Yu N 2018 JETP Lett. 107 651 61 Kang J and Vafek O 2020 Phys. Rev. B 102 035161 62 Huang S M, Huang Y P and Lee T K 2020 Phys. Rev. B 101 235140 63 Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q and Yang F arXiv:2003.09513 64 Li S Y, Zhang Y, Ren Y N, Liu J, Dai X and He L 2020 Phys. Rev. B 102 121406 65 Wang Y, Kang J and Fernandes R M arXiv:2009.01237 66 Wang T, Bultinck N and Zaletel M P 2020 Phys. Rev. B 102 235146 67 Christos M, Sachdev S and Scheurer M Proc. Natl. Acad. Sci. USA 117 29543 68 Kozii V, Zaletel M P and Bultinck N arXiv:2005.12961 69 He W Y, Goldhaber-Gordon D and Law K T 2020 Nat. Commun. 11 1650 70 Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M and Goldhaber-Gordon D Science 365 605 71 Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A Science 367 900 72 Xu X Y, Law K T and Lee P A 2018 Phys. Rev. B 98 121406 73 Da Liao Y, Meng Z Y and Xu X Y 2019 Phys. Rev. Lett. 123 157601 74 Po H C, Watanabe H and Vishwanath A 2018 Phys. Rev. Lett. 121 126402 75 Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R Science 363 1059 76 Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801 77 Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435 78 Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2019 Phys. Rev. Lett. 123 036401 79 Po H C, Zou L, Senthil T and Vishwanath A 2019 Phys. Rev. B 99 195455 80 Xie M and MacDonald A H 2020 Phys. Rev. Lett. 124 097601 81 Da Liao Y, Kang J, Breiø C N, Xu X Y, Wu H Q, Andersen B M, Fernand es R M and Meng Z Y arXiv:2004.12536 82 Lang T C, Meng Z Y, Muramatsu A, Wessel S and Assaad F F 2013 Phys. Rev. Lett. 111 066401 83 Moon P and Koshino M 2012 Phys. Rev. B 85 195458 84 Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 85 Zhou Z, Wang D, Meng Z Y, Wang Y and Wu C 2016 Phys. Rev. B 93 245157 86 Scherer M M and Herbut I F 2016 Phys. Rev. B 94 205136 87 Classen L, Herbut I F and Scherer M M 2017 Phys. Rev. B 96 115132 88 Torres E, Classen L, Herbut I F and Scherer M M 2018 Phys. Rev. B 97 125137 89 Zerf N, Mihaila L N, Marquard P, Herbut I F and Scherer M M 2017 Phys. Rev. D 96 096010 90 Liu Y, Wang W, Sun K and Meng Z Y 2020 Phys. Rev. B 101 064308 91 Gross D J and Neveu A 1974 Phys. Rev. D 10 3235 92 Hands S, Kocic A and Kogut J 1993 Annals of Physics 224 29 93 Rosenstein B, Yu H L and Kovner A 1993 Phys. Lett. B 314 381 94 Zerf N, Mihaila L N, Marquard P, Herbut I F and Scherer M M 2017 Phys. Rev. D 96 096010 95 Li Z X, Jiang Y F, Jian S K and Yao H Nat. Commun. 8 314 96 Mihaila L N, Zerf N, Ihrig B, Herbut I F and Scherer M M 2017 Phys. Rev. B 96 165133 97 Jian S K and Yao H 2017 Phys. Rev. B 96 195162 98 Ihrig B, Mihaila L N and Scherer M M 2018 Phys. Rev. B 98 125109 99 Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847 100 Zhu Z, Sheng D N and Fu L 2019 Phys. Rev. Lett. 123 087602 101 Haldane F. D M 1988 Phys. Rev. Lett. 61 2015 102 Hohenadler M, Meng Z Y, Lang T C, Wessel S, Muramatsu A and Assaad F F 2012 Phys. Rev. B 85 115132 103 He Y Y, Wu H Q, You Y Z, Xu C, Meng Z Y and Lu Z Y 2016 Phys. Rev. B 93 115150 104 Soejima T, Parker D E, Bultinck N, Hauschild J and Zaletel M P 2020 Phys. Rev. B 102 205111 105 Xie F, Cowsik A, Song Z D, Lian B, Bernevig B A and Regnault N arXiv:2010.00588 106 Liu X, Chiu C L, Lee J Y, Farahi G, Watanabe K, Taniguchi T, Vishwanath A and Yazdani A arXiv:2008.07552 107 Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, et al. liangjiedizhihttps://arxiv.org/abs/2009.018362020 arXiv:2009.01836 108 White S R 1992 Phys. Rev. Lett. 69 2863 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|