Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 018701    DOI: 10.1088/1674-1056/ab5941
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant

Erkun Chen(陈尔坤)1, Yangtao Fan(范洋涛)2, Guangju Zhao(赵光菊)1, Zongliang Mao(毛宗良)1, Haiping Zhou(周海平)3, Yanhui Liu(刘艳辉)1
1 College of Physics, Guizhou University, Guiyang 550025, China;
2 Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China;
3 Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China
Abstract  With a view of detecting the effects of macromolecular crowding on the phase transition of DNA compaction confined in spherical space, Monte Carlo simulations of DNA compaction in free space, in confined spherical space without crowders and in confined spherical space with crowders were performed separately. The simulation results indicate that macromolecular crowding effects on DNA compaction are dominant over the roles of multivalent counterions. In addition, effects of temperature on the phase transition of DNA compaction have been identified in confined spherical space with different radii. In confined spherical space without crowders, the temperature corresponding to phase transition depends on the radius of the confined spherical space linearly. In contrast, with the addition of crowders to the confined spherical space, effects of temperature on the phase transition of DNA compaction become insignificant, whereas the phase transition at different temperatures strongly depends on the size of crowder, and the critical volume fraction of crowders pertains to the diameter of crowder linearly.
Keywords:  macromolecular crowding      Monte Carlo simulation      DNA compaction      phase transition  
Received:  06 September 2019      Revised:  26 October 2019      Accepted manuscript online: 
PACS:  87.15.ak (Monte Carlo simulations)  
  87.16.A- (Theory, modeling, and simulations)  
  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
  87.14.G- (Nucleic acids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11464004 and 11864006), the State Scholarship Fund, China (Grant No. 20173015) and Guizhou Scientific and Technological Program, China (Grant No. 20185781).
Corresponding Authors:  Haiping Zhou, Yanhui Liu     E-mail:  hpzhou2885@163.com;ionazati@itp.ac.cn

Cite this article: 

Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉) Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant 2020 Chin. Phys. B 29 018701

[1] Hud N V and Vilfan I D 2005 Annu. Rev. Biophys. Biomol. Struct. 34 295
[2] Todd B A and Rau D C 2007 Nucleic. Acids. Res. 36 501
[3] Ou Z and Muthukumar M 2005 J. Chem. Phys. 123 074905
[4] Hemp S T and Long T E 2012 Macromol. Biosci. 12 29
[5] Zhou Z and Wang Y 2017 Chin. Phys. B 26 038701
[6] Fu W B, Wang X L, Zhang X H, Ran S Y, Yan J and Li M 2006 J. Am. Chem. Soc. 128 15040
[7] Li W, Wong W J, Lim C J, Ju H P, Li M, Yan J and Wang P Y 2015 Phys. Rev. E 92 022707
[8] Jia J L, Xi B and Ran S Y 2016 Macromol. Chem. Phys. 217 1629
[9] Li W, Wang P Y, Yan J and Li M 2012 Phys. Rev. Lett. 109 218102
[10] Ritort F, Mihardja S, Smith S B and Bustamante C 2006 Phys. Rev. Lett. 96 118301
[11] Besteman K, Hage S, Dekker N H and Lemay S G 2007 Phys. Rev. Lett. 98 058103
[12] Besteman K V E K, Van Eijk K and Lemay S G 2007 Nat. Phys. 3 641
[13] Luo Z, Wang Y, Li S and Yang G 2018 Polymers 10 394
[14] Wang Y, Gao T, Li S, Xia W, Zhang W and Yang G 2018 J. Phys. Chem. B 123 79
[15] Ma F, Wang Y and Yang G 2019 Polymers 11 646
[16] Gao T, Zhang W, Wang Y and Yang G 2019 Polymers 11 337
[17] Zhang C, Shao P G, van Kan J A and van der Maarel J R 2009 Proc. Natl. Acad. Sci. USA 106 16651
[18] Pelletier J, Halvorsen K, Ha B Y, Paparcone R, Sandler S J, Woldringh C L and Jun S 2012 Proc. Natl. Acad. Sci. USA 109 E2649
[19] Zhang C, Gong Z, Guttula D, Malar P P, van Kan J A, Doyle P S and van der Maarel J R 2012 J. Phys. Chem. B 116 3031
[20] Jones J J, van der Maarel J R and Doyle P S 2011 Nano Lett. 11 5047
[21] Negishi M, Ichikawa M, Nakajima M, Kojima M, Fukuda T and Yoshikawa K 2011 Phys. Rev. E 83 061921
[22] Gu L, Zhou Q, Zhou H, Gao Q, Peng Y, Song X and Liu Y 2018 Physica A 507 489
[23] Biswas N, Ichikawa M, Datta A, Sato Y T, Yanagisawa M and Yoshikawa K 2012 Chem. Phys. Lett. 539-540 157
[24] Liu Y, Wang W and Hu L 2012 J. Biol. Phys. 38 589
[25] Mao W, Gao Q, Liu Y, Fan Y, Hu L and Xu H 2016 Mod. Phys. Lett. B 30 1650298
[26] Zhang M, Gu L, Fan Y, Liu Y and Zhou X 2017 Mod. Phys. Lett. B 31 1750147
[27] Liu Y H, Jiang C M, Guo X M, Tang Y L and Hu L 2013 Front. Phys. 8 467
[28] Geggier S, Kotlyar A and Vologodskii A 2011 Nucleic. Acids. Res. 39 1419
[29] Kim W K and Sung W 2008 Phys. Rev. E 78 021904
[30] Zhang X, Bao L, Wu Y Y, Zhu X L and Tan Z J 2017 J. Chem. Phys. 147 054901
[31] Senti F R, Hellman N N, Ludwig N H, Babcock G E, Tobin R, Glass C A and Lamberts B L 1955 J. Chem. Phys. 17 527
[32] Stevens J 2001 Biophys. J. 80 130
[33] Shew C Y and Yoshikawa K 2015 J. Phys.-Condens. Matter 27 064118
[34] Saito T, Iwaki T and Yoshikawa K 2005 Europhys. Lett. 71 304
[35] Saito T, Iwaki T and Yoshikawa K 2009 Biophys. J. 96 1068
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!