Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University |
Prev
Next
|
|
|
Fragmentation dynamics of electron-impact double ionization of helium |
Shiwei Liu(刘士炜)1, Difa Ye(叶地发)1,2,†, and Jie Liu(刘杰)3,4,‡ |
1 Beijing Computational Science Research Center, Beijing 100193, China; 2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 Graduate School, China Academy of Engineering Physics, Beijing 100193, China; 4 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China |
|
|
Abstract We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 eV to 1 keV for comparative study. At the lowest excess energy, i.e., close to the double-ionization threshold, it is found that the projectile momentum is totally transferred to the recoil-ion while the residual energy is randomly partitioned among the three outgoing electrons, which are then most probably emitted with an equilateral triangle configuration. Our results agree well with experiments as compared with early quantum-mechanical calculation as well as classical simulation based on a two-dimensional Bohr's model. Furthermore, by mapping the final momentum vectors event by event into a Dalitz plot, we unambiguously demonstrate that the ergodicity has been reached and thus confirm a long-term scenario conceived by Wannier. The time scale for such few-body thermalization, from the initial nonequilibrium state to the final microcanonical distribution, is only about 100 attoseconds. Finally, we predict that, with the increase of the excess energy, the dominant emission configuration undergoes a transition from equilateral triangle to T-shape and finally to a co-linear mode. The associated signatures of such configuration transition in the electron-ion joint momentum spectrum and triple-electron angular distribution are also demonstrated.
|
Received: 11 January 2023
Revised: 05 February 2023
Accepted manuscript online: 23 February 2023
|
PACS:
|
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
34.80.-i
|
(Electron and positron scattering)
|
|
34.50.Fa
|
(Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174034, 12047510, and 11822401) and NSAF (Grant Nos. U1930402 and U1930403). |
Corresponding Authors:
Difa Ye, Jie Liu
E-mail: ye_difa@iapcm.ac.cn;jliu@gscaep.ac.cn
|
Cite this article:
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰) Fragmentation dynamics of electron-impact double ionization of helium 2023 Chin. Phys. B 32 063402
|
[1] Bartschat K and Kushner M J2016 Proc. Natl. Acad. Sci. USA 113 7026 [2] Alizadeh E, Orlando T M and Sanche L2015 Annu. Rev. Phys. Chem. 66 379 [3] Güsten R, Wiesemeyer H, Neufeld D, Menten K M, Graf U U, Jacobs K, Klein B, Ricken O, Risacher C and Stutzki J2019 Nature 568 357 [4] Novotný O, Wilhelm P, Paul D, Kálosi Á, Saurabh S, Becker A, Blaum K, George S, Göck J, Grieser M, Grussie F, von Hahn R, Krantz C, Kreckel H, Meyer C, Mishra P M, Muell D, Nuesslein F, Orlov D A, Rimmler M, Schmidt V C, Shornikov A, Terekhov A S, Vogel S, Zajfman D and Wolf A2019 Science 365 676 [5] Michael B D and O'Neill P2000 Science 287 1603 [6] Boudaïffa B, Cloutier P, Hunting D, Huels M A and Sanche L2000 Science 287 1658 [7] Gokhberg K, Kolorenč P, Kuleff A I and Cederbaum L S2014 Nature 505 661 [8] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H and Schmidt-Böcking H2003 Rep. Prog. Phys. 66 1463 [9] Bray I, Fursa D V, Kadyrov A S, Stelbovics A T and Kheifets A S2012 Phys. Rep. 520 135 [10] Bray I, Bray A W, Fursa D V and Kadyrov A S2018 Phys. Rev. Lett. 121 203401 [11] Colgan J, Emmanouilidou A and Pindzola M S2013 Phys. Rev. Lett. 110 063001 [12] Burke P G 2011 R-matrix Theory of Atomic Collisions (New York: Springer) [13] Rescigno T N, Baertschy M, Isaacs W A, McCurdy C W1999 Science 286 2474 [14] Colgan J and Pindzola M S2018 J. Phys. B 51 185202 [15] Feldmeier H and Schnack J2000 Rev. Mod. Phys. 72 655 [16] Su J T and Goddard III W A2007 Phys. Rev. Lett. 99 185003 [17] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y X, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, Grama A and van Duin A C T2016 Npj Comput. Mater. 2 15011 [18] Wannier G H1955 Phys. Rev. 100 1180 [19] Wannier G H1953 Phys. Rev. 90 817 [20] Duan B, Bai Z Q and Gu Y2000 Acta Phys. Sin. 49 1428 (in Chinese) [21] Brion C E and Thomas G E1968 Int. J. Mass Spectrom. Ion Phys. 1 25 [22] Lebius H, Koslowski H R, Wiesemann K and Huber B A1991 Ann. Phys. (Leipzig) 503 103 [23] Denifl S, Gstir B, Hanel G, Feketeova L, Matejcik S, Becker K, Stamatovic A, Scheier P and Märk T D2002 J. Phys. B 35 4685 [24] Dürr M, Dorn A, Ullrich J, Cao S P, Czasch A, Kheifets A S, Götz J R and Briggs J S2007 Phys. Rev. Lett. 98 193201 [25] Ren X, Dorn A and Ullrich J2008 Phys. Rev. Lett. 101 093201 [26] Cao S P, Ma X W, Dorn A, Dürr M and Ullrich J2007 Acta Phys. Sin. 56 6386 (in Chinese) [27] Klar H and Schlecht W1976 J. Phys. B 9 1699 [28] Dimitrijevic M S and Grujic P1981 J. Phys. B 14 1663 [29] Liu J 2013 Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields: Semiclassical Modeling (New York: Springer) [30] Ye D F, Liu X J and Liu J2008 Phys. Rev. Lett. 101 233003 [31] Ye D F, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q and Ullrich J2015 Phys. Rev. Lett. 115 123001 [32] Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F and Jiang Y H2020 Phys. Rev. A 102 043112 [33] Liu S W, Ye D F and Liu J2020 Phys. Rev. A 101 052704 [34] Liu S W, Ye D F and Liu J2020 J. Phys. B: At. Mol. Opt. Phys. 53 145005 [35] Abrines R and Percival I C1966 Proc. Phys. Soc. London 88 861 [36] Olson R E and Gay T J1988 Phys. Rev. Lett. 61 302 [37] Liu S W, Duan H, Ye D F and Liu J2021 Phys. Rev. C 104 044614 [38] Liu S W, Ye D F and Liu J2022 Phys. Rev. C 106 064611 [39] Kirschbaum C L and Wilets L1980 Phys. Rev. A 21 834 [40] Zajfman D and Maor D1986 Phys. Rev. Lett. 56 320 [41] Cohen J S1995 Phys. Rev. A 51 266 [42] Zhou Y M, Huang C, Liao Q and Lu P X2012 Phys. Rev. Lett. 109 053004 [43] Lötstedt E, Kato T and Yamanouchi K2011 Phys. Rev. Lett. 106 203001 [44] Zhou J and Wang X2022 Opt. Express 30 16802 [45] Nelder J A and Mead R1965 Comput. J. 7 308 [46] Cohen J S1982 Phys. Rev. A 26 3008 [47] Lahmam-Bennani A, Duguet A, Gaboriaud M N2001 J. Phys. B 34 3073 [48] Read F H 1985 Threshold behavior of ionization cross-sections, in Electron Impact Ionization, edited by Märk T D and Dunn G H (New York: Springer-Verlag) [49] Dalitz R H1953 Philos. Mag. 44 1068 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|