Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 058201    DOI: 10.1088/1674-1056/acaa2d
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries

Ao Chen(陈奥)1, Hua Tong(童话)1, Cheng-Wei Wu(吴成伟)1, Guofeng Xie(谢国锋)1, Zhong-Xiang Xie(谢忠祥)2,†, Chang-Qing Xiang(向长青)3,‡, and Wu-Xing Zhou(周五星)1,§
1 School of Materials Science and Engineering&Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China;
2 School of Science, Hunan Institute of Technology, Hengyang 421002, China;
3 College of Information Science and Engineering, Jishou University, Jishou 416000, China
Abstract  The thermal transport properties of NiNb$_{2}$O$_{6}$ as anode material for lithium-ion battery and the effect of strain were studied by machine learning interatomic potential combined with Boltzmann transport equation. The results show that the lattice thermal conductivity of NiNb$_{2}$O$_{6}$ along the three crystal directions [100], [010], and [001] are 0.947 W$\cdot$m$^{-1}\cdot$K$^{-1}$, 0.727 W$\cdot$m$^{-1}\cdot$K$^{-1}$, and 0.465 W$\cdot$m$^{-1}\cdot$K$^{-1}$, respectively, indicating the anisotropy of the lattice thermal conductivity of NiNb$_{2}$O$_{6}$. This anisotropy of the lattice thermal conductivity stems from the significant difference of phonon group velocities in different crystal directions of NiNb$_{2}$O$_{6}$. When the tensile strain is applied along the [001] crystal direction, the lattice thermal conductivity in all three directions decreases. However, when the compressive strain is applied, the lattice thermal conductivity in the [100] and [010] crystal directions is increased, while the lattice thermal conductivity in the [001] crystal direction is abnormally reduced due to the significant inhibition of compressive strain on the group velocity. These indicate that the anisotropy of thermal conductivity of NiNb$_{2}$O$_{6}$ can be enhanced by the compressive strain, and reduced by the tensile strain.
Keywords:  nickel niobate      lattice thermal conductivity      uniaxial strain      machine learning potential  
Received:  15 October 2022      Revised:  06 December 2022      Accepted manuscript online:  09 December 2022
PACS:  82.47.Aa (Lithium-ion batteries)  
  74.25.fc (Electric and thermal conductivity)  
  44.10.+i (Heat conduction)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074115 and 11874145) and the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30202).
Corresponding Authors:  Zhong-Xiang Xie, Chang-Qing Xiang, Wu-Xing Zhou     E-mail:;;

Cite this article: 

Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星) Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries 2023 Chin. Phys. B 32 058201

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q and Fu Z W 2015 Sci. Rep. 5 8810
[3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[4] Du A, Li H, Chen X, Han Y, Zhu Z and Chu C 2022 ChemistrySelect 7 e202201269
[5] Eftekhari A 2017 J. Power Sources 343 395
[6] Yang F, Feng X, Glans P A and Guo J 2021 APL Materials 9 050903
[7] Wang Y Q, Sun X R, Xiao R H and Chen L Q 2020 Chin. Phys. B 29 038202
[8] Venugopal B, Syum Z, Yu S Y, sabbah A, Shown I, Chu C W, Chen L C, Lee C H, Wu H L and Chen K H 2022 ACS Omega 7 9152
[9] Zhao Q, Peng P, Zhu P, Yang G, Sun X, Ding R, Gao P and Liu E 2022 New J. Chem. 46 9612
[10] Xia R, Zhao K, Kuo L Y, Zhang L, Cunha D M, Wang Y, Huang S, Zheng J, Boukamp B, Kaghazchi P, Sun C, ten Elshof J E and Huijben M 2021 Adv. Energy Mater. 12 2102972
[11] Soavi F, Brilloni A, De Giorgio F and Poli F 2022 Current Opinion in Chemical Engineering 37 100835
[12] Li S, Shi X Y, Tang Z P, Li D X, Zhang Y C, Xiao Y, Song Y, Zheng Z, Zhong Y J, Wu Z G, Zhong B H and Guo X D 2022 Appl. Surf. Sci. 585 152643
[13] Weiss M, Ruess R, Kasnatscheew J, Levartovsky Y, Levy N R, Minnmann P, Stolz L, Waldmann T, Wohlfahrt-Mehrens M, Aurbach D, Winter M, Ein-Eli Y and Janek J 2021 Adv. Energy Mater. 11 2101126
[14] Liu K, Liu Y, Lin D, Pei A and Cui Y 2018 Sci. Adv. 4 eaas9820
[15] Xiang C, Wu C W, Zhou W X, Xie G and Zhang G 2021 Front. Phys. 17 13202
[16] Jiang Z Y, Li H B, Qu Z G and Zhang J F 2022 Int. J. Hydrogen Energy 47 9428
[17] Wu C W, Ren X, Zhou W X and Xie G 2022 Acta Phys. Sin. 71 027803 (in Chinese)
[18] Suwardi A, Cao J, Hu L, et al. 2020 J. Mater. Chem. A 8 18880
[19] Suwardi A, Cao J, Zhao Y, Wu J, Chien S W, Tan X Y, Hu L, Wang X, Wang W, Li D, Yin Y, Zhou W X, Repaka D V M, Chen J, Zheng Y, Yan Q, Zhang G and Xu J 2020 Mater. Today Phys. 14 100239
[20] Chen X K, Hu X Y, Jia P, Xie Z X and Liu J 2021 Int. J. Mech. Sci. 206 106576
[21] Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[22] Jia P Z, Zeng Y J, Wu D, Pan H, Cao X H, Zhou W X, Xie Z X, Zhang J X and Chen K Q 2019 J. Phys.: Condens. Matter 32 055302
[23] He J, Zhang L and Liu L 2019 Phys. Chem. Chem. Phys. 21 12192
[24] Meng H, Yu X, Feng H, Xue Z and Yang N 2019 Int. J. Heat Mass Transfer 137 1241
[25] Abdullaev A, Mukanova A, Yakupov T, Mentbayeva A, Bakenov Z and Utegulov Z 2020 Mater. Today Proc. 25 88
[26] Yang H, Savory C N, Morgan B J, Scanlon D O, Skelton J M and Walsh A 2020 Chem. Mater. 32 7542
[27] Steinhardt M, Gillich E I, Stiegler M and Jossen A 2020 J. Energy Storage 32 101680
[28] Wu C W, Ren X, Zhou W X, Xie G and Zhang G 2022 APL Materials 10 040902
[29] Wu C W, Xie G F and Zhou W X 2022 Acta Phys. Sin. 71 026501 (in Chinese)
[30] Toledo-Quiroz R A, Calderón-Muñoz W R and Paccha-Herrera E 2021 J. Energy Storage 44 103394
[31] Mortazavi B, Podryabinkin E V, Novikov I S, Rabczuk T, Zhuang X and Shapeev A V 2021 Comput. Phys. Commun. 258 107583
[32] Mortazavi B, Novikov I S, Podryabinkin E V, Roche S, Rabczuk T, Shapeev A V and Zhuang X 2020 Appl. Mater. Today 20 100685
[33] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Balke N, Jesse S, Morozovska A N, Eliseev E, Chung D W, Kim Y, Adamczyk L, GarcíPa R E, Dudney N and Kalinin S V 2010 Nat. Nanotechnol. 5 749
[36] Liu T, Liu J, Li L, et al. 2022 Nature 606 305
[37] Yaeger I, Morrish A H and Wanklyn B M 1977 Phys. Rev. B 15 1465
[38] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[39] Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
[40] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[41] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[42] Thiemann F L, Rowe P, Müller E A and Michaelides A 2020 J. Phys. Chem. C 124 22278
[43] Fujii S and Seko A 2022 Comp. Mater. Sci. 204 111137
[44] Qian X, Peng S, Li X, Wei Y and Yang R 2019 Mater. Today Phys. 10 100140
[45] Blöchl P E 1994 Phys. Rev. B 50 17953
[46] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[47] Togo A and Tanaka I 2015 Scr. Mater. 108 1-5
[48] Wang H, Jang Y I, Huang B, Sadoway D R and Chiang Y M 1999 J. Electrochem. Soc. 146 473
[49] Feng T, O'Hara A and Pantelides S T 2020 Nano Energy 75 104916
[50] Chernatynskiy A and Phillpot S R 2013 J. Appl. Phys. 114 064902
[51] Broido D A, Lindsay L and Ward A 2012 Phys. Rev. B 86 115203
[52] Mukhopadhyay S and Stewart D A 2014 Phys. Rev. Lett. 113 025901
[53] Tang D S, Qin G Z, Hu M and Cao B Y 2020 J. Appl. Phys. 127 035102
[54] Parrish K D, Jain A, Larkin J M, Saidi W A and McGaughey A J H 2014 Phys. Rev. B 90 235201
[55] Ouyang T and Hu M 2015 Phys. Rev. B 92 235204
[56] Zhang P, Ouyang T, Tang C, He C, Li J, Zhang C and Zhong J 2020 Physica E: Low-dimensional Systems and Nanostructures 118 113870
[57] Lindsay L, Broido D A, Carrete J, Mingo N and Reinecke T L 2015 Phys. Rev. B 91 121202
[58] Zhang C, Sun J, Shen Y, Kang W and Wang Q 2022 J. Phys. Chem. Lett. 13 5734
[59] Dong H, Wen B and Melnik R 2014 Sci. Rep. 4 7037
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[3] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[4] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[5] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[6] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[7] Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047203.
[8] Uniaxial strain-modulated electronic structures of CdX (X=S, Se, Te) from first-principles calculations: A comparison between bulk and nanowires
Linlin Xiang(相琳琳), Shenyuan Yang(杨身园). Chin. Phys. B, 2017, 26(8): 087103.
[9] Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure
N A Izuani Che Rosid, M T Ahmadi, Razali Ismail. Chin. Phys. B, 2016, 25(9): 096802.
[10] Study of lattice thermal conductivity of alpha-zirconium by molecular dynamics simulation
Wu Tian-Yu (武天宇), Lai Wen-Sheng (赖文生), Fu Bao-Qin (付宝勤). Chin. Phys. B, 2013, 22(7): 076601.
[11] Effect of phonon scattering mechanisms on the lattice thermal conductivity of skutterudite-related compound
Yang Lei (杨磊), Wu Jian-Sheng (吴建生), Zhang Lan-Ting (张澜庭). Chin. Phys. B, 2004, 13(4): 516-521.
No Suggested Reading articles found!