Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries |
Ao Chen(陈奥)1, Hua Tong(童话)1, Cheng-Wei Wu(吴成伟)1, Guofeng Xie(谢国锋)1, Zhong-Xiang Xie(谢忠祥)2,†, Chang-Qing Xiang(向长青)3,‡, and Wu-Xing Zhou(周五星)1,§ |
1 School of Materials Science and Engineering&Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China; 2 School of Science, Hunan Institute of Technology, Hengyang 421002, China; 3 College of Information Science and Engineering, Jishou University, Jishou 416000, China |
|
|
Abstract The thermal transport properties of NiNb$_{2}$O$_{6}$ as anode material for lithium-ion battery and the effect of strain were studied by machine learning interatomic potential combined with Boltzmann transport equation. The results show that the lattice thermal conductivity of NiNb$_{2}$O$_{6}$ along the three crystal directions [100], [010], and [001] are 0.947 W$\cdot$m$^{-1}\cdot$K$^{-1}$, 0.727 W$\cdot$m$^{-1}\cdot$K$^{-1}$, and 0.465 W$\cdot$m$^{-1}\cdot$K$^{-1}$, respectively, indicating the anisotropy of the lattice thermal conductivity of NiNb$_{2}$O$_{6}$. This anisotropy of the lattice thermal conductivity stems from the significant difference of phonon group velocities in different crystal directions of NiNb$_{2}$O$_{6}$. When the tensile strain is applied along the [001] crystal direction, the lattice thermal conductivity in all three directions decreases. However, when the compressive strain is applied, the lattice thermal conductivity in the [100] and [010] crystal directions is increased, while the lattice thermal conductivity in the [001] crystal direction is abnormally reduced due to the significant inhibition of compressive strain on the group velocity. These indicate that the anisotropy of thermal conductivity of NiNb$_{2}$O$_{6}$ can be enhanced by the compressive strain, and reduced by the tensile strain.
|
Received: 15 October 2022
Revised: 06 December 2022
Accepted manuscript online: 09 December 2022
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
44.10.+i
|
(Heat conduction)
|
|
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074115 and 11874145) and the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30202). |
Corresponding Authors:
Zhong-Xiang Xie, Chang-Qing Xiang, Wu-Xing Zhou
E-mail: xiezxhu@163.com;changqingxiang@jsu.edu.cn;wuxingzhou@hnu.edu.cn
|
Cite this article:
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星) Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries 2023 Chin. Phys. B 32 058201
|
[1] Tarascon J M and Armand M 2001 Nature 414 359 [2] Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q and Fu Z W 2015 Sci. Rep. 5 8810 [3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587 [4] Du A, Li H, Chen X, Han Y, Zhu Z and Chu C 2022 ChemistrySelect 7 e202201269 [5] Eftekhari A 2017 J. Power Sources 343 395 [6] Yang F, Feng X, Glans P A and Guo J 2021 APL Materials 9 050903 [7] Wang Y Q, Sun X R, Xiao R H and Chen L Q 2020 Chin. Phys. B 29 038202 [8] Venugopal B, Syum Z, Yu S Y, sabbah A, Shown I, Chu C W, Chen L C, Lee C H, Wu H L and Chen K H 2022 ACS Omega 7 9152 [9] Zhao Q, Peng P, Zhu P, Yang G, Sun X, Ding R, Gao P and Liu E 2022 New J. Chem. 46 9612 [10] Xia R, Zhao K, Kuo L Y, Zhang L, Cunha D M, Wang Y, Huang S, Zheng J, Boukamp B, Kaghazchi P, Sun C, ten Elshof J E and Huijben M 2021 Adv. Energy Mater. 12 2102972 [11] Soavi F, Brilloni A, De Giorgio F and Poli F 2022 Current Opinion in Chemical Engineering 37 100835 [12] Li S, Shi X Y, Tang Z P, Li D X, Zhang Y C, Xiao Y, Song Y, Zheng Z, Zhong Y J, Wu Z G, Zhong B H and Guo X D 2022 Appl. Surf. Sci. 585 152643 [13] Weiss M, Ruess R, Kasnatscheew J, Levartovsky Y, Levy N R, Minnmann P, Stolz L, Waldmann T, Wohlfahrt-Mehrens M, Aurbach D, Winter M, Ein-Eli Y and Janek J 2021 Adv. Energy Mater. 11 2101126 [14] Liu K, Liu Y, Lin D, Pei A and Cui Y 2018 Sci. Adv. 4 eaas9820 [15] Xiang C, Wu C W, Zhou W X, Xie G and Zhang G 2021 Front. Phys. 17 13202 [16] Jiang Z Y, Li H B, Qu Z G and Zhang J F 2022 Int. J. Hydrogen Energy 47 9428 [17] Wu C W, Ren X, Zhou W X and Xie G 2022 Acta Phys. Sin. 71 027803 (in Chinese) [18] Suwardi A, Cao J, Hu L, et al. 2020 J. Mater. Chem. A 8 18880 [19] Suwardi A, Cao J, Zhao Y, Wu J, Chien S W, Tan X Y, Hu L, Wang X, Wang W, Li D, Yin Y, Zhou W X, Repaka D V M, Chen J, Zheng Y, Yan Q, Zhang G and Xu J 2020 Mater. Today Phys. 14 100239 [20] Chen X K, Hu X Y, Jia P, Xie Z X and Liu J 2021 Int. J. Mech. Sci. 206 106576 [21] Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829 [22] Jia P Z, Zeng Y J, Wu D, Pan H, Cao X H, Zhou W X, Xie Z X, Zhang J X and Chen K Q 2019 J. Phys.: Condens. Matter 32 055302 [23] He J, Zhang L and Liu L 2019 Phys. Chem. Chem. Phys. 21 12192 [24] Meng H, Yu X, Feng H, Xue Z and Yang N 2019 Int. J. Heat Mass Transfer 137 1241 [25] Abdullaev A, Mukanova A, Yakupov T, Mentbayeva A, Bakenov Z and Utegulov Z 2020 Mater. Today Proc. 25 88 [26] Yang H, Savory C N, Morgan B J, Scanlon D O, Skelton J M and Walsh A 2020 Chem. Mater. 32 7542 [27] Steinhardt M, Gillich E I, Stiegler M and Jossen A 2020 J. Energy Storage 32 101680 [28] Wu C W, Ren X, Zhou W X, Xie G and Zhang G 2022 APL Materials 10 040902 [29] Wu C W, Xie G F and Zhou W X 2022 Acta Phys. Sin. 71 026501 (in Chinese) [30] Toledo-Quiroz R A, Calderón-Muñoz W R and Paccha-Herrera E 2021 J. Energy Storage 44 103394 [31] Mortazavi B, Podryabinkin E V, Novikov I S, Rabczuk T, Zhuang X and Shapeev A V 2021 Comput. Phys. Commun. 258 107583 [32] Mortazavi B, Novikov I S, Podryabinkin E V, Roche S, Rabczuk T, Shapeev A V and Zhuang X 2020 Appl. Mater. Today 20 100685 [33] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747 [34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [35] Balke N, Jesse S, Morozovska A N, Eliseev E, Chung D W, Kim Y, Adamczyk L, GarcíPa R E, Dudney N and Kalinin S V 2010 Nat. Nanotechnol. 5 749 [36] Liu T, Liu J, Li L, et al. 2022 Nature 606 305 [37] Yaeger I, Morrish A H and Wanklyn B M 1977 Phys. Rev. B 15 1465 [38] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [39] Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070 [40] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403 [41] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401 [42] Thiemann F L, Rowe P, Müller E A and Michaelides A 2020 J. Phys. Chem. C 124 22278 [43] Fujii S and Seko A 2022 Comp. Mater. Sci. 204 111137 [44] Qian X, Peng S, Li X, Wei Y and Yang R 2019 Mater. Today Phys. 10 100140 [45] Blöchl P E 1994 Phys. Rev. B 50 17953 [46] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [47] Togo A and Tanaka I 2015 Scr. Mater. 108 1-5 [48] Wang H, Jang Y I, Huang B, Sadoway D R and Chiang Y M 1999 J. Electrochem. Soc. 146 473 [49] Feng T, O'Hara A and Pantelides S T 2020 Nano Energy 75 104916 [50] Chernatynskiy A and Phillpot S R 2013 J. Appl. Phys. 114 064902 [51] Broido D A, Lindsay L and Ward A 2012 Phys. Rev. B 86 115203 [52] Mukhopadhyay S and Stewart D A 2014 Phys. Rev. Lett. 113 025901 [53] Tang D S, Qin G Z, Hu M and Cao B Y 2020 J. Appl. Phys. 127 035102 [54] Parrish K D, Jain A, Larkin J M, Saidi W A and McGaughey A J H 2014 Phys. Rev. B 90 235201 [55] Ouyang T and Hu M 2015 Phys. Rev. B 92 235204 [56] Zhang P, Ouyang T, Tang C, He C, Li J, Zhang C and Zhong J 2020 Physica E: Low-dimensional Systems and Nanostructures 118 113870 [57] Lindsay L, Broido D A, Carrete J, Mingo N and Reinecke T L 2015 Phys. Rev. B 91 121202 [58] Zhang C, Sun J, Shen Y, Kang W and Wang Q 2022 J. Phys. Chem. Lett. 13 5734 [59] Dong H, Wen B and Melnik R 2014 Sci. Rep. 4 7037 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|