|
|
Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface |
Gang Wang(王刚)1,2, Shan Guan(管闪)1, Zhi-Gang Song(宋志刚)1, and Jun-Wei Luo(骆军委)1,2,† |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The achievement of universal quantum computing critically relies on scalability. However, ensuring the necessary uniformity for scalable silicon electron spin qubits poses a significant challenge due to the considerable fluctuations in valley splitting energy ($E_{\textrm{VS}}$) across quantum dot arrays, which impede the initialization of qubit systems comprising multiple spins and give rise to spin-valley entanglement resulting in the loss of spin information. These $E_{\textrm{VS}}$ fluctuations have been attributed to variations in the in-plane averaged alloy concentration along the confinement direction of Si/SiGe quantum wells. In this study, employing atomistic pseudopotential calculations, we unveil a significant spectrum of $E_{\textrm{VS}}$ even in the absence of such concentration fluctuations. This spectrum represents the lower limit of the wide range of $E_{\textrm{VS}}$ observed in numerous Si/SiGe quantum devices. By constructing simplified interface atomic step models, we analytically demonstrate that the lower bound of the $E_{\textrm{VS}}$ spread originates from the in-plane random distribution of Si and Ge atoms within SiGe barriers — an inherent characteristic that has been previously overlooked. Additionally, we propose an interface engineering approach to mitigate the in-plane randomness-induced fluctuations in $E_{\textrm{VS}}$ by inserting a few monolayers of pure Ge barrier at the Si/SiGe interface. Our findings provide valuable insights into the critical role of in-plane randomness in determining $E_{\textrm{VS}}$ in Si/SiGe quantum devices and offer reliable methods to enhance the feasibility of scalable Si-based spin qubits.
|
Received: 13 June 2023
Revised: 05 August 2023
Accepted manuscript online: 21 August 2023
|
PACS:
|
73.21.Fg
|
(Quantum wells)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.61.Cw
|
(Elemental semiconductors)
|
|
Fund: Project supported by the National Science Fund for Distinguished Young Scholars (Grant No. 11925407), the Basic Science Center Program of the National Natural Science Foundation of China (Grant No. 61888102), and the Key Research Program of Frontier Sciences of CAS (Grant No. ZDBS-LYJSC019), and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-026). |
Corresponding Authors:
Jun-Wei Luo
E-mail: jwluo@semi.ac.cn
|
Cite this article:
Gang Wang(王刚), Shan Guan(管闪), Zhi-Gang Song(宋志刚), and Jun-Wei Luo(骆军委) Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface 2023 Chin. Phys. B 32 107309
|
[1] DiVincenzo D P 2000 Fortschritte der Physik 48 771 [2] Vandersypen L M K and Eriksson M A 2019 Physics Today 72 38 [3] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [4] Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H, Möttönen M, Nugroho C D, Yang C, van Donkelaar J A, Alves A D C, Jamieson D N, Escott C C, Hollenberg L C L, Clark R G and Dzurak A S 2010 Nature 467 687 [5] Yang C H, Rossi A, Ruskov R, Lai N S, Mohiyaddin F A, Lee S, Tahan C, Klimeck G, Morello A and Dzurak A S 2013 Nat. Commun. 4 2069 [6] Assali L V C, Petrilli H M, Capaz R B, Koiller B, Hu X and Das Sarma S 2011 Phys. Rev. B 83 165301 [7] Tyryshkin A M, Tojo S, Morton J J L, Riemann H, Abrosimov N V, Becker P, Pohl H J, Schenkel T, Thewalt M L W, Itoh K M and Lyon S A 2012 Nat. Mater. 11 143 [8] Steger M, Saeedi K, Thewalt M L W, Morton J J L, Riemann H, Abrosimov N V, Becker P and Pohl H J 2012 Science 336 1280 [9] Yang C H, Leon R C C, Hwang J C C, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Pioro-Ladriére M, Laucht A and Dzurak A S 2020 Nature 580 350 [10] Petit L, Eenink H G J, 314 Russ M, Lawrie W I L, Hendrickx N W, Philips S G J, Clarke J S, Vandersypen L M K and Veldhorst M 2020 Nature 580 355 [11] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102 [12] Yang C H, Chan K W, Harper R, Huang W, Evans T, Hwang J C C, Hensen B, Laucht A, Tanttu T, Hudson F E, Flammia S T, Itoh K M, Morello A, Bartlett S D and Dzurak A S 2019 Nat. Electron. 2 151 [13] Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A and Dzurak A S 2015 Nature 526 410 [14] Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633 [15] Sigillito A J, Gullans M J, Edge L F, Borselli M and Petta J R 2019 npj Quantum Inf. 5 1 [16] Chan K W, Sahasrabudhe H, Huang W, Wang Y, Yang H C, Veldhorst M, Hwang J C C, Mohiyaddin F A, Hudson F E, Itoh K M, Saraiva A, Morello A, Laucht A, Rahman R and Dzurak A S 2021 Nano Lett. 21 1517 [17] Maurand R, Jehl X, Kotekar-Patil D, Corna A, Bohuslavskyi H, Laviéville R, Hutin L, Barraud S, Vinet M, Sanquer M and De Franceschi S 2016 Nat. Commun. 7 13575 [18] Huang W, Yang C H, Chan K W, Tanttu T, Hensen B, Leon R C C, Fogarty M A, Hwang J C C, Hudson F E, Itoh K M, Morello A, Laucht A and Dzurak A S 2019 Nature 569 532 [19] Tahan C and Joynt R 2014 Phys. Rev. B 89 075302 [20] Huang P and Hu X 2014 Phys. Rev. B 90 235315 [21] Hu X 2011 Phys. Rev. B 83 165322 [22] Gamble J K, Friesen M, Coppersmith S N and Hu X 2012 Phys. Rev. B 86 035302 [23] Zajac D M, Hazard T M, Mi X, Wang K and Petta J R 2015 Appl. Phys. Lett. 106 223507 [24] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N and Eriksson M A 2006 Nat. Phys. 3 41 [25] Wuetz B P, Losert M P, Tosato A, Lodari M, Bavdaz P L, Stehouwer L, Amin P, Clarke J S, Coppersmith S N, Sammak A, Veldhorst M, Friesen M and Scappucci G 2020 Phys. Rev. Lett. 125 186801 [26] Mi X, Péterfalvi C G, Burkard G and Petta J 2017 Phys. Rev. Lett. 119 176803 [27] Hollmann A, Struck T, Langrock V, Schmidbauer A, Schauer F, Leonhardt T, Sawano K, Riemann H, Abrosimov N V, Bougeard D and Schreiber L R 2020 Phys. Rev. Appl. 13 034068 [28] Borselli M G, Ross R S, Kiselev A A, Croke E T, Holabird K S, Deelman P W, Warren L D, Alvarado-Rodriguez I, Milosavljevic I, Ku F C, Wong W S, Schmitz A E, Sokolich M, Gyure M F and Hunter A T 2011 Appl. Phys. Lett. 98 123118 [29] Borjans F, Zajac D, Hazard T and Petta J 2019 Phys. Rev. Appl. 11 044063 [30] Zhao X and Hu X 2019 arXiv:1803.00749 [cond-mat, physics:quant-ph] [31] Srinivasan S, Klimeck G and Rokhinson L P 2008 Appl. Phys. Lett. 93 112102 [32] Jiang Z, Kharche N, Boykin T and Klimeck G 2012 Appl. Phys. Lett. 100 103502 [33] Zhang L, Luo J W, Saraiva A, Koiller B and Zunger A 2013 Nat. Commun. 4 2396 [34] Paquelet Wuetz B, Losert M P, Koelling S, Stehouwer L E A, Zwerver A M J, Philips S G J, Madzik M T, Xue X, Zheng G, Lodari M, Amitonov S V, Samkharadze N, Sammak A, Vandersypen L M K, Rahman R, Coppersmith S N, Moutanabbir O, Friesen M and Scappucci G 2022 Nat. Commun. 13 7730 [35] Sham L J and Nakayama M 1979 Phys. Rev. B 20 734 [36] Ando T 1979 Phys. Rev. B 19 3089 [37] Boykin T B, Klimeck G, Friesen M, Coppersmith S N, von Allmen P, Oyafuso F and Lee S 2004 Phys. Rev. B 70 165325 [38] Nestoklon M O, Golub L E and Ivchenko E L 2006 Phys. Rev. B 73 235334 [39] Friesen M, Eriksson M A and Coppersmith S N 2006 Appl. Phys. Lett. 89 202106 [40] Friesen M, Chutia S, Tahan C and Coppersmith S N 2007 Phys. Rev. B 75 115318 [41] Kharche N, Prada M, Boykin T B and Klimeck G 2007 Appl. Phys. Lett. 90 092109 [42] Friesen M and Coppersmith S N 2010 Phys. Rev. B 81 115324 [43] Culcer D, Hu X and Das Sarma S 2010 Phys. Rev. B 82 205315 [44] Gamble J K, Eriksson M A, Coppersmith S N and Friesen M 2013 Phys. Rev. B 88 035310 [45] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961 [46] Boross P, Széchenyi G, Culcer D and Pályi A 2016 Phys. Rev. B 94 035438 [47] Tariq B and Hu X 2019 Phys. Rev. B 100 125309 [48] Hosseinkhani A and Burkard G 2020 Phys. Rev. Research 2 043180 [49] Lima J R F and Burkard G 2023 Materials for Quantum Technology 3 025004 [50] Takashina K, Fujiwara A, Horiguchi S, Takahashi Y and Hirayama Y 2004 Phys. Rev. B 69 161304 [51] Lai K, Lu T M, Pan W, Tsui D C, Lyon S, Liu J, Xie Y H, Mühlberger M and Schäffler F 2006 Phys. Rev. B 73 161301 [52] Sasaki K, Masutomi R, Toyama K, Sawano K, Shiraki Y and Okamoto T 2009 Appl. Phys. Lett. 95 222109 [53] Neyens S F, Foote R H, Thorgrimsson B, Knapp T J, McJunkin T, Vandersypen L M K, Amin P, Thomas N K, Clarke J S, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2018 Appl. Phys. Lett. 112 243107 [54] Abadillo-Uriel J C, Thorgrimsson B, Kim D, Smith L W, Simmons C B, Ward D R, Foote R H, Corrigan J, Savage D E, Lagally M G, Calderón M J, Coppersmith S N, Eriksson M A and Friesen M 2018 Phys. Rev. B 98 165438 [55] Dodson J P, Ercan H E, Corrigan J, Losert M P, Holman N, McJunkin T, Edge L F, Friesen M, Coppersmith S N and Eriksson M A 2022 Phys. Rev. Lett. 128 146802 [56] Ohkawa F J and Uemura Y 1977 J. Phys. Soc. Jpn. 43 917 [57] Ohkawa F J 1978 Solid State Commun. 26 69 [58] Valavanis A, Ikonić Z and Kelsall R W 2007 Phys. Rev. B 75 205332 [59] Saraiva A L, Calderón M J, Hu X, Das Sarma S and Koiller B 2009 Phys. Rev. B 80 081305 [60] Saraiva A L, Calderón M J, Capaz R B, Hu X, Das Sarma S and Koiller B 2011 Phys. Rev. B 84 155320 [61] Wang L W and Zunger A 1995 Phys. Rev. B 51 17398 [62] Wang L W, Kim J and Zunger A 1999 Phys. Rev. B 59 5678 [63] Zhang S B, Yeh C Y and Zunger A 1993 Phys. Rev. B 48 11204 [64] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425 [65] Wang L and Zunger A 1994 J. Chem. Phys. 100 2394 [66] Luo J W, Bester G and Zunger A 2009 Phys. Rev. Lett. 102 056405 [67] Magri R and Zunger A 2002 Phys. Rev. B 65 165302 [68] Wang L W, Franceschetti A and Zunger A 1997 Phys. Rev. Lett. 78 2819 [69] An J M, Franceschetti A, Dudiy S V and Zunger A 2006 Nano Lett. 6 2728 [70] Luo J W, Bester G and Zunger A 2009 New J. Phys. 11 123024 [71] Pryor C, Kim J, Wang L W, Williamson A J and Zunger A 1998 J. Appl. Phys. 83 2548 [72] Williamson A J, Wang L W and Zunger A 2000 Phys. Rev. B 62 12963 [73] Weisstein E W Rectangle function from MathWorld-A Wolfram Web Resource [74] Wang G, Song Z G, Luo J W and Li S S 2022 Phys. Rev. B 105 165308 [75] McJunkin T, MacQuarrie E R, Tom L, Neyens S F, Dodson J P, Thorgrimsson B, Corrigan J, Ercan H E, Savage D E, Lagally M G, Joynt R, Coppersmith S N, Friesen M and Eriksson M A 2021 Phys. Rev. B 104 085406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|