Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107309    DOI: 10.1088/1674-1056/acf208
RAPID COMMUNICATION Prev   Next  

Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface

Gang Wang(王刚)1,2, Shan Guan(管闪)1, Zhi-Gang Song(宋志刚)1, and Jun-Wei Luo(骆军委)1,2,†
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The achievement of universal quantum computing critically relies on scalability. However, ensuring the necessary uniformity for scalable silicon electron spin qubits poses a significant challenge due to the considerable fluctuations in valley splitting energy ($E_{\textrm{VS}}$) across quantum dot arrays, which impede the initialization of qubit systems comprising multiple spins and give rise to spin-valley entanglement resulting in the loss of spin information. These $E_{\textrm{VS}}$ fluctuations have been attributed to variations in the in-plane averaged alloy concentration along the confinement direction of Si/SiGe quantum wells. In this study, employing atomistic pseudopotential calculations, we unveil a significant spectrum of $E_{\textrm{VS}}$ even in the absence of such concentration fluctuations. This spectrum represents the lower limit of the wide range of $E_{\textrm{VS}}$ observed in numerous Si/SiGe quantum devices. By constructing simplified interface atomic step models, we analytically demonstrate that the lower bound of the $E_{\textrm{VS}}$ spread originates from the in-plane random distribution of Si and Ge atoms within SiGe barriers — an inherent characteristic that has been previously overlooked. Additionally, we propose an interface engineering approach to mitigate the in-plane randomness-induced fluctuations in $E_{\textrm{VS}}$ by inserting a few monolayers of pure Ge barrier at the Si/SiGe interface. Our findings provide valuable insights into the critical role of in-plane randomness in determining $E_{\textrm{VS}}$ in Si/SiGe quantum devices and offer reliable methods to enhance the feasibility of scalable Si-based spin qubits.
Keywords:  quantum wells      valley splitting      alloy concentration fluctuation  
Received:  13 June 2023      Revised:  05 August 2023      Accepted manuscript online:  21 August 2023
PACS:  73.21.Fg (Quantum wells)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.61.Cw (Elemental semiconductors)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars (Grant No. 11925407), the Basic Science Center Program of the National Natural Science Foundation of China (Grant No. 61888102), and the Key Research Program of Frontier Sciences of CAS (Grant No. ZDBS-LYJSC019), and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-026).
Corresponding Authors:  Jun-Wei Luo     E-mail:  jwluo@semi.ac.cn

Cite this article: 

Gang Wang(王刚), Shan Guan(管闪), Zhi-Gang Song(宋志刚), and Jun-Wei Luo(骆军委) Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface 2023 Chin. Phys. B 32 107309

[1] DiVincenzo D P 2000 Fortschritte der Physik 48 771
[2] Vandersypen L M K and Eriksson M A 2019 Physics Today 72 38
[3] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[4] Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H, Möttönen M, Nugroho C D, Yang C, van Donkelaar J A, Alves A D C, Jamieson D N, Escott C C, Hollenberg L C L, Clark R G and Dzurak A S 2010 Nature 467 687
[5] Yang C H, Rossi A, Ruskov R, Lai N S, Mohiyaddin F A, Lee S, Tahan C, Klimeck G, Morello A and Dzurak A S 2013 Nat. Commun. 4 2069
[6] Assali L V C, Petrilli H M, Capaz R B, Koiller B, Hu X and Das Sarma S 2011 Phys. Rev. B 83 165301
[7] Tyryshkin A M, Tojo S, Morton J J L, Riemann H, Abrosimov N V, Becker P, Pohl H J, Schenkel T, Thewalt M L W, Itoh K M and Lyon S A 2012 Nat. Mater. 11 143
[8] Steger M, Saeedi K, Thewalt M L W, Morton J J L, Riemann H, Abrosimov N V, Becker P and Pohl H J 2012 Science 336 1280
[9] Yang C H, Leon R C C, Hwang J C C, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Pioro-Ladriére M, Laucht A and Dzurak A S 2020 Nature 580 350
[10] Petit L, Eenink H G J, 314 Russ M, Lawrie W I L, Hendrickx N W, Philips S G J, Clarke J S, Vandersypen L M K and Veldhorst M 2020 Nature 580 355
[11] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102
[12] Yang C H, Chan K W, Harper R, Huang W, Evans T, Hwang J C C, Hensen B, Laucht A, Tanttu T, Hudson F E, Flammia S T, Itoh K M, Morello A, Bartlett S D and Dzurak A S 2019 Nat. Electron. 2 151
[13] Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A and Dzurak A S 2015 Nature 526 410
[14] Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633
[15] Sigillito A J, Gullans M J, Edge L F, Borselli M and Petta J R 2019 npj Quantum Inf. 5 1
[16] Chan K W, Sahasrabudhe H, Huang W, Wang Y, Yang H C, Veldhorst M, Hwang J C C, Mohiyaddin F A, Hudson F E, Itoh K M, Saraiva A, Morello A, Laucht A, Rahman R and Dzurak A S 2021 Nano Lett. 21 1517
[17] Maurand R, Jehl X, Kotekar-Patil D, Corna A, Bohuslavskyi H, Laviéville R, Hutin L, Barraud S, Vinet M, Sanquer M and De Franceschi S 2016 Nat. Commun. 7 13575
[18] Huang W, Yang C H, Chan K W, Tanttu T, Hensen B, Leon R C C, Fogarty M A, Hwang J C C, Hudson F E, Itoh K M, Morello A, Laucht A and Dzurak A S 2019 Nature 569 532
[19] Tahan C and Joynt R 2014 Phys. Rev. B 89 075302
[20] Huang P and Hu X 2014 Phys. Rev. B 90 235315
[21] Hu X 2011 Phys. Rev. B 83 165322
[22] Gamble J K, Friesen M, Coppersmith S N and Hu X 2012 Phys. Rev. B 86 035302
[23] Zajac D M, Hazard T M, Mi X, Wang K and Petta J R 2015 Appl. Phys. Lett. 106 223507
[24] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N and Eriksson M A 2006 Nat. Phys. 3 41
[25] Wuetz B P, Losert M P, Tosato A, Lodari M, Bavdaz P L, Stehouwer L, Amin P, Clarke J S, Coppersmith S N, Sammak A, Veldhorst M, Friesen M and Scappucci G 2020 Phys. Rev. Lett. 125 186801
[26] Mi X, Péterfalvi C G, Burkard G and Petta J 2017 Phys. Rev. Lett. 119 176803
[27] Hollmann A, Struck T, Langrock V, Schmidbauer A, Schauer F, Leonhardt T, Sawano K, Riemann H, Abrosimov N V, Bougeard D and Schreiber L R 2020 Phys. Rev. Appl. 13 034068
[28] Borselli M G, Ross R S, Kiselev A A, Croke E T, Holabird K S, Deelman P W, Warren L D, Alvarado-Rodriguez I, Milosavljevic I, Ku F C, Wong W S, Schmitz A E, Sokolich M, Gyure M F and Hunter A T 2011 Appl. Phys. Lett. 98 123118
[29] Borjans F, Zajac D, Hazard T and Petta J 2019 Phys. Rev. Appl. 11 044063
[30] Zhao X and Hu X 2019 arXiv:1803.00749 [cond-mat, physics:quant-ph]
[31] Srinivasan S, Klimeck G and Rokhinson L P 2008 Appl. Phys. Lett. 93 112102
[32] Jiang Z, Kharche N, Boykin T and Klimeck G 2012 Appl. Phys. Lett. 100 103502
[33] Zhang L, Luo J W, Saraiva A, Koiller B and Zunger A 2013 Nat. Commun. 4 2396
[34] Paquelet Wuetz B, Losert M P, Koelling S, Stehouwer L E A, Zwerver A M J, Philips S G J, Madzik M T, Xue X, Zheng G, Lodari M, Amitonov S V, Samkharadze N, Sammak A, Vandersypen L M K, Rahman R, Coppersmith S N, Moutanabbir O, Friesen M and Scappucci G 2022 Nat. Commun. 13 7730
[35] Sham L J and Nakayama M 1979 Phys. Rev. B 20 734
[36] Ando T 1979 Phys. Rev. B 19 3089
[37] Boykin T B, Klimeck G, Friesen M, Coppersmith S N, von Allmen P, Oyafuso F and Lee S 2004 Phys. Rev. B 70 165325
[38] Nestoklon M O, Golub L E and Ivchenko E L 2006 Phys. Rev. B 73 235334
[39] Friesen M, Eriksson M A and Coppersmith S N 2006 Appl. Phys. Lett. 89 202106
[40] Friesen M, Chutia S, Tahan C and Coppersmith S N 2007 Phys. Rev. B 75 115318
[41] Kharche N, Prada M, Boykin T B and Klimeck G 2007 Appl. Phys. Lett. 90 092109
[42] Friesen M and Coppersmith S N 2010 Phys. Rev. B 81 115324
[43] Culcer D, Hu X and Das Sarma S 2010 Phys. Rev. B 82 205315
[44] Gamble J K, Eriksson M A, Coppersmith S N and Friesen M 2013 Phys. Rev. B 88 035310
[45] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
[46] Boross P, Széchenyi G, Culcer D and Pályi A 2016 Phys. Rev. B 94 035438
[47] Tariq B and Hu X 2019 Phys. Rev. B 100 125309
[48] Hosseinkhani A and Burkard G 2020 Phys. Rev. Research 2 043180
[49] Lima J R F and Burkard G 2023 Materials for Quantum Technology 3 025004
[50] Takashina K, Fujiwara A, Horiguchi S, Takahashi Y and Hirayama Y 2004 Phys. Rev. B 69 161304
[51] Lai K, Lu T M, Pan W, Tsui D C, Lyon S, Liu J, Xie Y H, Mühlberger M and Schäffler F 2006 Phys. Rev. B 73 161301
[52] Sasaki K, Masutomi R, Toyama K, Sawano K, Shiraki Y and Okamoto T 2009 Appl. Phys. Lett. 95 222109
[53] Neyens S F, Foote R H, Thorgrimsson B, Knapp T J, McJunkin T, Vandersypen L M K, Amin P, Thomas N K, Clarke J S, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2018 Appl. Phys. Lett. 112 243107
[54] Abadillo-Uriel J C, Thorgrimsson B, Kim D, Smith L W, Simmons C B, Ward D R, Foote R H, Corrigan J, Savage D E, Lagally M G, Calderón M J, Coppersmith S N, Eriksson M A and Friesen M 2018 Phys. Rev. B 98 165438
[55] Dodson J P, Ercan H E, Corrigan J, Losert M P, Holman N, McJunkin T, Edge L F, Friesen M, Coppersmith S N and Eriksson M A 2022 Phys. Rev. Lett. 128 146802
[56] Ohkawa F J and Uemura Y 1977 J. Phys. Soc. Jpn. 43 917
[57] Ohkawa F J 1978 Solid State Commun. 26 69
[58] Valavanis A, Ikonić Z and Kelsall R W 2007 Phys. Rev. B 75 205332
[59] Saraiva A L, Calderón M J, Hu X, Das Sarma S and Koiller B 2009 Phys. Rev. B 80 081305
[60] Saraiva A L, Calderón M J, Capaz R B, Hu X, Das Sarma S and Koiller B 2011 Phys. Rev. B 84 155320
[61] Wang L W and Zunger A 1995 Phys. Rev. B 51 17398
[62] Wang L W, Kim J and Zunger A 1999 Phys. Rev. B 59 5678
[63] Zhang S B, Yeh C Y and Zunger A 1993 Phys. Rev. B 48 11204
[64] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425
[65] Wang L and Zunger A 1994 J. Chem. Phys. 100 2394
[66] Luo J W, Bester G and Zunger A 2009 Phys. Rev. Lett. 102 056405
[67] Magri R and Zunger A 2002 Phys. Rev. B 65 165302
[68] Wang L W, Franceschetti A and Zunger A 1997 Phys. Rev. Lett. 78 2819
[69] An J M, Franceschetti A, Dudiy S V and Zunger A 2006 Nano Lett. 6 2728
[70] Luo J W, Bester G and Zunger A 2009 New J. Phys. 11 123024
[71] Pryor C, Kim J, Wang L W, Williamson A J and Zunger A 1998 J. Appl. Phys. 83 2548
[72] Williamson A J, Wang L W and Zunger A 2000 Phys. Rev. B 62 12963
[73] Weisstein E W Rectangle function from MathWorld-A Wolfram Web Resource
[74] Wang G, Song Z G, Luo J W and Li S S 2022 Phys. Rev. B 105 165308
[75] McJunkin T, MacQuarrie E R, Tom L, Neyens S F, Dodson J P, Thorgrimsson B, Corrigan J, Ercan H E, Savage D E, Lagally M G, Joynt R, Coppersmith S N, Friesen M and Eriksson M A 2021 Phys. Rev. B 104 085406
[1] Single-mode GaSb-based laterally coupled distributed-feedback laser for CO2 gas detection
Shi-Xian Han(韩实现), Jin-Yi Yan(严进一), Chun-Fang Cao(曹春芳), Jin Yang(杨锦), An-Tian Du(杜安天), Yuan-Yu Chen(陈元宇), Ruo-Tao Liu(刘若涛), Hai-Long Wang(王海龙), and Qian Gong(龚谦). Chin. Phys. B, 2023, 32(10): 104205.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[6] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[7] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[8] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[9] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[10] Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow
Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏). Chin. Phys. B, 2017, 26(8): 087307.
[11] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
[12] Analysis of localization effect in blue-violet light emitting InGaN/GaN multiple quantum wells with different well widths
Xiang Li(李翔), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Wei Liu(刘炜), Xiao-Guang He(何晓光), Xiao-Jing Li(李晓静), Feng Liang(梁锋), Jian-Ping Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同), Heng Long(龙衡), Mo Li(李沫). Chin. Phys. B, 2017, 26(1): 017805.
[13] Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells
E Ben Salem, R Chaabani, S Jaziri. Chin. Phys. B, 2016, 25(9): 098101.
[14] Exciton-phonon interaction in Al0.4Ga0.6N/Al0.53Ga0.47N multiple quantum wells
Ya-Li Liu(刘雅丽), Peng Jin(金鹏), Gui-Peng Liu(刘贵鹏), Wei-Ying Wang(王维颖), Zhi-Qiang Qi(齐志强), Chang-Qing Chen(陈长清), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 087801.
[15] Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well
Wei-Min Zheng(郑卫民), Su-Mei Li(李素梅), Wei-Yan Cong(丛伟艳), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2016, 25(4): 047302.
No Suggested Reading articles found!