ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces |
Haiyang Li(李海洋), Jun Wang(王军)†, and Guodong Xia(夏国栋) |
MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction. In this study, we propose to implement the thermal rectification phenomenon in an asymmetric solid-liquid-solid sandwiched system with a nano-structured interface. By using the non-equilibrium molecular dynamics simulations, the thermal transport through the solid-liquid-solid system is examined, and the thermal rectification phenomenon can be observed. It is revealed that the thermal rectification effect can be attributed to the significant difference in the interfacial thermal resistance between Cassie and Wenzel states when reversing the temperature bias. In addition, effects of the liquid density, solid-liquid bonding strength and nanostructure size on the thermal rectification are examined. The findings may provide a new way for designs of certain thermal devices.
|
Received: 01 October 2022
Revised: 17 November 2022
Accepted manuscript online: 08 December 2022
|
PACS:
|
44.90.+c
|
(Other topics in heat transfer)
|
|
61.30.Hn
|
(Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)
|
|
68.08.-p
|
(Liquid-solid interfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51976002), and the Beijing Nova Program of Science and Technology (Grant No. Z191100001119033). |
Corresponding Authors:
Jun Wang
E-mail: jwang@bjut.edu.cn
|
Cite this article:
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋) Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces 2023 Chin. Phys. B 32 054401
|
[1] Roberts N A and Walker D G 2011 Int. J. Therm. Sci. 50 648 [2] Wehmeyer G, Yabuki T, Monachon C, Wu J and Dames C 2017 Appl. Phys. Rev. 4 041304 [3] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B W 2012 Rev. Mod. Phys. 84 1045 [4] Wong M Y, Tso C Y, Ho T C and Lee H H 2021 Int. J. Heat Mass Transfer 164 120607 [5] Wang L and Li B W 2007 Phys. Rev. Lett. 99 177208 [6] Kuo M and Chang Y 2010 Phys. Rev. B 81 205321 [7] Roberts N A and Walker D G 2011 J. Heat Transfer 133 092401 [8] Paolucci F, Marchegiani G, Strambini E and Giazotto F 2018 Phys. Rev. Appl. 10 024003 [9] Varga S, Oliveira A C and Afonso C F 2002 Energy Build. 34 227 [10] Henry A, Prasher R and Majumdar A 2020 Nat. Energy 5 635 [11] Starr C 1936 Physics 7 15 [12] Rogers G F C 1961 Int. J. Heat Mass Transfer 2 150 [13] Zhao J N, Wei D, Shang X C and Liu D H 2022 Int. J. Heat Mass Transfer 194 123024 [14] Wang J, Shao C R, Li H Y and Xia G D 2022 Int. J. Heat Mass Transfer 188 122627 [15] Yang N, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 33107 [16] Craven G T, He D H and Nitzan A 2018 Phys. Rev. Lett. 121 247704 [17] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302 [18] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301 [19] Hu B B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302 [20] Chang C W, Okawa D, Majumder A and Zettl A 2006 Science 314 1121 [21] Zhang Y F, Lv Q, Wang H D, Zhao S Y, Xiong Q H, Lv R T and Zhang X 2022 Science 378 169 [22] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 1 [23] Yuan K P, Sun M M, Wang Z L and Tang D W 2015 Int. J. Therm. Sci. 98 24 [24] Feng F and Liang X 2017 J. Heat Transfer 139 052402 [25] He D H, Thingna J and Cao J S 2018 Phys. Rev. B 97 195437 [26] Zhan S Q, Huang W Q and Huang G F 2014 Chin. Phys. B 23 114401 [27] Zhang Z W, Ouyang Y L, Chen J and Sebastian V 2020 Chin. Phys. B 29 124402 [28] Zhou H and Zhang G 2018 Chin. Phys. B 27 034401 [29] Wang Z, Zhang D M and Ren J 2019 Acta Phys. Sin. 68 220302 (in Chinese) [30] Hu M, Goicochea J V, Michel B and Poulikakos D 2009 Appl. Phys. Lett. 95 151903 [31] Murad S and Puri I K 2014 Appl. Phys. Lett. 104 211601 [32] Murad S and Puri I K 2012 J. Chem. Phys. 137 3714 [33] Feng F and Liang X G 2015 Int. J. Thermophys. 36 1519 [34] Avanessian T and Hwang G 2018 Int. J. Heat Mass Transfer 124 201 [35] Avanessian T and Hwang G 2016 J. Appl. Phys. 120 165306 [36] Li F, Li H Y, Wang J and Xia G D 2022 J. Therm. Sci. 31 10 [37] Meng Z, Gulfam R and Zhang P 2021 Int. J. Therm. Sci. 164 106856 [38] Hong Y, Zhang J and Zeng X C 2018 Chin. Phys. B 27 036501 [39] Li Y Y, Li N B, Tirnakli U, Li B W and Tsallis C 2017 Europhys. Lett. 117 60004 [40] Peng G L, Xu Z W, Ji J J, Sun S S and Yang N 2022 Appl. Thermal Eng. 213 118664 [41] Pham A, Barisik M and Kim B H 2013 J. Chem. Phys. 139 244702 [42] Han H, Mérabia S and Müller-Plathe F 2017 J. Phys. Chem. Lett. 8 1946 [43] Hu M, Goicochea J V, Michel B and Poulikakos D 2009 Nano Lett. 10 279 [44] Lin T, Li J, Quan X and Cheng P 2018 Int. Commun. Heat Mass Transfer 97 118 [45] Song G and Chen M 2013 Mol. Phys. 111 903 [46] Cao Q, Cui Z and Shao W 2020 Langmuir 36 2802 [47] Harikrishna H, Ducker W A and Huxtable S T 2013 Appl. Phys. Lett. 102 251606 [48] Li H Y, Wang J and Xia G D 2022 J. Therm. Sci. 31 13 [49] Zheng Q S, Yu Y and Zhao Z H 2005 Langmuir 21 12207 [50] Cai T M, Jia Z H, Yang H N and Wang G 2016 Colloid Polym. Sci. 294 833 [51] Yin L, Lin P and Qi X 2014 Chin. Phys. Lett. 31 114401 [52] Plimpton S 1995 J. Comput. Phys. 117 1 [53] Hippler H 1983 J. Chem. Phys. 78 6709 [54] Pamuk H Ö and Halicioǧlu T 1976 Phys. Status Solidi A 37 695 [55] Grenier R, To Q D, Lara-Castells M P D and Leonard C 2015 J. Phys. Chem. A 119 6897 [56] Li F, Wang J, Xia G D and Li Z G 2019 Nanoscale 11 13051 [57] Li F, Wang J and Xia G D 2020 J. Phys. Chem. C 124 92 [58] Chan H K, He D H and Hu B 2014 Phys. Rev. E 89 052126 [59] Surblys D, Kawagoe Y, Shibahara M and Ohara T 2019 J. Chem. Phys. 150 114705 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|