Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087801    DOI: 10.1088/1674-1056/acc1d1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures

Chun-Yan Zhao(赵春艳)1, Sha-Sha Li(李莎莎)2, and Yong Yan(闫勇)1,†
1. School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China;
2. School of Electronic Engineering, Chaohu University, Hefei 238024, China
Abstract  Type-II band alignment can realize the efficient charge transfer and separation at the semiconductor heterointerface, which results in photoluminescence (PL) quenching. Recently, several researches demonstrated great enhancement of localized PL at the interface of type-II two-dimensional (2D) heterostructure. However, the dominant physical mechanism of this enhanced PL emission has not been well understood. In this work, we symmetrically study the exciton dynamics of type-II lateral heterostructures of monolayer MoS2 and WS2 at room temperatures. The strong PL enhancement along the one-dimensional (1D) heterointerface is associated with the trion emission of the WS2 shell, while a dramatic PL quenching of neutral exciton is observed on the MoS2 core. The enhanced quantum yield of WS2 trion emission can be explained by charge-transfer-enhanced photoexcited carrier dynamics, which is facilitated by resonance hole transfer from MoS2 side to WS2 side. This work sheds light on the 1D exciton photophysics in lateral heterostructures, which has the potential to lead to new concepts and applications of optoelectronic device.
Keywords:  lateral heterostructures      resonance charge transfer      MoS2/WS2      photoluminescence enhancement      band alignment  
Received:  05 November 2022      Revised:  26 February 2023      Accepted manuscript online:  07 March 2023
PACS:  78.66.Li (Other semiconductors)  
  78.40.Fy (Semiconductors)  
  68.47.Fg (Semiconductor surfaces)  
  68.35.bg (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61804047), the Training Program for the Natural Science Foundation of Henan Normal University,China (Grant No.2017PL02), the Scientific Research Start-up Foundation for PhD of Chaohu University, China (Grant No.KYQD-2023012), the Natural Science Foundation Henan Province of China (Grant No.232300421236), and the High Performance Computing Center (HPCC) of Henan Normal University, China.
Corresponding Authors:  Yong Yan     E-mail:  yanyong@htu.edu.cn

Cite this article: 

Chun-Yan Zhao(赵春艳), Sha-Sha Li(李莎莎), and Yong Yan(闫勇) Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures 2023 Chin. Phys. B 32 087801

[1] Zhang Z, Ji X, Shi J, Zhou X, Zhang S, Hou Y, Qi Y, Fang Q, Ji Q, Zhang Y, Hong M, Yang P, Liu X, Zhang Q, Liao L, Jin C, Liu Z and Zhang Y 2017 ACS Nano 11 4328
[2] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C and Wu W W 2016 Adv. Mater. 28 8302
[3] Azizi A, Dogan M, Long H, Cain J D, Lee K, Eskandari R, Varieschi A, Glazer E C, Cohen M L and Zettl A 2020 Nano Lett. 20 6120
[4] Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S and Hersam M C 2018 Nature 554 500
[5] Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J and Mak K F 2019 Nature 574 76
[6] Fei Z, Scott M E, Gosztola D J, Foley J J, Yan J, Mandrus D G, Wen H, Zhou P, Zhang D W, Sun Y, Guest J R, Gray S K, Bao W, Wiederrecht G P and Xu X 2016 Phys. Rev. B 94 081402
[7] Paul K K, Kim J H and Lee Y H 2021 Nat. Rev. Phys. 3 178
[8] Si M, Su C J, Jiang C, Conrad N J, Zhou H, Maize K D, Qiu G, Wu C T, Shakouri A, Alam M A and Ye P D 2018 Nat. Nanotechnol. 13 24
[9] Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W and Xu X 2015 Nat. Commun. 6 6242
[10] Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Beng, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
[11] Chiu M H, Zhang C, Shiu H W, Chuu C P, Chen C H, Chang C Y, Chen C H, Chou M Y, Shih C K and Li L J 2015 Nat. Commun. 6 7666
[12] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682
[13] Yuan J, Najmaei S, Zhang Z, Zhang J, Lei S, Ajayan P M, Yakobson B I and Lou J 2015 ACS Nano 9 555
[14] Sun S, Dang J, Xie X, Yu Y, Yang L, Xiao S, Wu S, Peng K, Song F, Wang Y, Yang J, Qian C, Zuo Z and Xu X 2020 Chin. Phys. Lett. 37 087801
[15] Zhao S, Tan J, Ke C, Feng S, Lai Y, Ding B, Luo G, Lin J and Liu B 2022 Science China Materials 65 1034
[16] Ye K, Liu L, Liu Y, Nie A, Zhai K, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Gong Y, Liu Z and Tian Y 2019 Adv. Opt. Mater. 7 1900815
[17] Chen C, Yang Y, Zhou X, Xu W, Cui Q, Lu J, Jing H, Tian D, Xu C, Zhai T and Xu H 2021 ACS Appl. Nano Mater. 4 5522
[18] Najafidehaghani E, Gan Z, George A, Lehnert T, Ngo G Q, Neumann C, Bucher T, Staude I, Kaiser D, Vogl T, Hübner U, Kaiser U, Eilenberger F and Turchanin A 2021 Adv. Funct. Mater. 31 2101086
[19] Zhang Z, Chen P, Duan X, Zang K, Luo J and Duan X 2017 Science 357 788
[20] Wang Z, Xie Y, Wang H, Wu R, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W, Zhu Q, Ma X and Hao Y 2017 Nanotechnology 28 325602
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Blochl P E 1994 Phys. Rev. B 50 17953
[23] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Huang C, Wu S, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H and Xu X 2014 Nat. Mater. 13 1096
[26] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524
[27] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[28] Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H and Terrones M 2013 Nano Lett. 13 3447
[29] Hu Z, Avila J, Wang X, Leong J F, Zhang Q, Liu Y, Asensio M C, Lu J, Carvalho A, Sow C H and Castro Neto A H 2019 Nano Lett. 19 4641
[30] Chen K, Wan X, Xie W, Wen J, Kang Z, Zeng X, Chen H and Xu J 2015 Adv. Mater. 27 6431
[31] Feng L P, Su J and Liu Z T 2014 J. Alloys Compd. 613 122
[32] Han H V, Lu A Y, Lu L S, Huang J K, Li H, Hsu C L, Lin Y C, Chiu M H, Suenaga K, Chu C W, Kuo H C, Chang W H, Li L J and Shi Y 2016 ACS Nano 10 1454
[33] McCreary A, Berkdemir A, Wang J, Nguyen M A, Elías A L, Perea-López N, Fujisawa K, Kabius B, Carozo V, Cullen D A, Mallouk T E, Zhu J and Terrones M 2016 J. Mater. Res. 31 931
[34] Cong C, Shang J, Wang Y and Yu T 2018 Adv. Opt. Mater. 6 1700767
[35] Sheng Y, Wang X, Fujisawa K, Ying S, Elias A L, Lin Z, Xu W, Zhou Y, Korsunsky A M, Bhaskaran H, Terrones M and Warner J H 2017 ACS Appl. Mater. Interfaces 9 15005
[36] Guo Y and Robertson J 2016 Appl. Phys. Lett. 108 233104
[37] Gaur A P S, Rivera A M, Dash S P, Dey S, Katiyar R S and Sahoo S 2019 Appl. Phys. Lett. 115 173103
[38] Kim H, Yoon Y G, Ko H, Kim S M and Rho H 2019 2D Mater. 6 025004
[39] Liu H, Wang C, Zuo Z, Liu D and Luo J 2020 Adv. Mater. 32 1906540
[40] Vega-Mayoral V, Vella D, Borzda T, Prijatelj M, Tempra I, Pogna E A A, Dal Conte S, Topolovsek P, Vujicic N, Cerullo G, Mihailovic D and Gadermaier C 2016 Nanoscale 8 5428
[41] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072
[42] Rahman S, Liu B, Wang B, Tang Y and Lu Y 2021 ACS Appl. Mater. Interfaces 13 7423
[1] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[5] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[6] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[7] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[8] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[9] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[10] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[11] Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(4): 048801.
[12] Energy-band alignment of atomic layer deposited (HfO2)x(Al2O3)1-x gate dielectrics on 4H-SiC
Jia Ren-Xu (贾仁需), Dong Lin-Peng (董林鹏), Niu Ying-Xi (钮应喜), Li Cheng-Zhan (李诚瞻), Song Qing-Wen (宋庆文), Tang Xiao-Yan (汤晓燕), Yang Fei (杨霏), Zhang Yu-Ming (张玉明). Chin. Phys. B, 2015, 24(3): 038103.
[13] A theoretical investigation of the band alignment of type-I direct band gap dilute nitride phosphide alloy of GaNxAsyP1-x-y/GaP quantum wells on GaP substrates
Ö L Ünsal, B Gönül, M Temiz. Chin. Phys. B, 2014, 23(7): 077104.
[14] Analysis of flatband voltage shift of metal/high-k/SiO2/Si stack based on energy band alignment of entire gate stack
Han Kai (韩锴), Wang Xiao-Lei (王晓磊), Xu Yong-Gui (徐永贵), Yang Hong (杨红), Wang Wen-Wu (王文武). Chin. Phys. B, 2014, 23(11): 117702.
[15] Energy band alignment at ferroelectric/electrode interface determined by photoelectron spectroscopy
Chen Feng (陈峰), Wu Wen-Bin (吴文彬), Li Shun-Yi (李舜怡), Andreas Klein. Chin. Phys. B, 2014, 23(1): 017702.
No Suggested Reading articles found!