CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Investigation of heavy ion irradiation effects on a charge trapping memory capacitor by bm C-V measurement |
Qiyu Chen(陈麒宇)1,2, Xirong Yang(杨西荣)1,2, Zongzhen Li(李宗臻)1,†, Jinshun Bi(毕津顺)3, Kai Xi(习凯)3, Zhenxing Zhang(张振兴)4, Pengfei Zhai(翟鹏飞)1,2, Youmei Sun(孙友梅)1,2, and Jie Liu(刘杰)1,2,‡ |
1 Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; 2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 4 Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Heavy ion irradiation effects on charge trapping memory (CTM) capacitors with TiN/Al2O3/HfO2/Al2O3/HfO2/ SiO2/p-Si structure have been investigated. The ion-induced interface charges and oxide trap charges were calculated and analyzed by capacitance-voltage (C-V) characteristics. The C-V curves shift towards the negative direction after swift heavy ion irradiation, due to the net positive charges accumulating in the trapping layer. The memory window decreases with the increase of ion fluence at high voltage, which results from heavy ion-induced structural damage in the blocking layer. The mechanism of heavy ion irradiation effects on CTM capacitors is discussed in detail with energy band diagrams. The results may help to better understand the physical mechanism of heavy ion-induced degradation of CTM capacitors.
|
Received: 05 September 2022
Revised: 21 December 2022
Accepted manuscript online: 27 December 2022
|
PACS:
|
61.82.Fk
|
(Semiconductors)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
42.88.+h
|
(Environmental and radiation effects on optical elements, devices, and systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12105340, 12035019, and 12075290) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020412). We would like to thank all the accelerator staff at the HIRFL accelerator. |
Corresponding Authors:
Zongzhen Li, Jie Liu
E-mail: lizz@impcas.ac.cn;j.liu@impcas.ac.cn
|
Cite this article:
Qiyu Chen(陈麒宇), Xirong Yang(杨西荣), Zongzhen Li(李宗臻), Jinshun Bi(毕津顺), Kai Xi(习凯),Zhenxing Zhang(张振兴), Pengfei Zhai(翟鹏飞), Youmei Sun(孙友梅), and Jie Liu(刘杰) Investigation of heavy ion irradiation effects on a charge trapping memory capacitor by bm C-V measurement 2023 Chin. Phys. B 32 096102
|
[1] Gerardin S and Paccagnella A 2010 IEEE Trans. Nucl. Sci. 57 3016 [2] White M H, Adams D A, Murray J R, Wrazien S, Zhao Y J, Wang Y, Khan B, Miller W and Mehrotra R 2004 IEEE Computational Systems Bioinformatics Conference, November 17, 2004, Orlando, USA, p. 51 [3] Guterman D C, Rimawi I H, Halvorson R D and McElroy D J 1979 IEEE J. Solid-State Circuits 14 498 [4] Lu C Y, Hsieh K Y and Liu R 2009 Microelectron. Eng. 86 283 [5] Van Houdt J 2011 Curr. Appl. Phys. 11 e21 [6] Molas G, Bocquet M, Vianello E, Perniola L, Grampeix H, Colonna J P, Masarotto L, Martin F, Brianceau P, Gély M, Bongiorno C, Lombardo S, Pananakakis G, Ghibaudo G and De Salvo B 2009 Microelectron. Eng. 86 1796 [7] You H W and Cho W J 2010 Appl. Phys. Lett. 96 093506 [8] Chen L J, Wu Y C, Chiang J H, Hung M F, Chang C W and Su P W 2009 Jpn. J. Appl. Phys. 48 120215 [9] Chen W, Liu W J, Zhang M, Ding S J, Zhang D W and Li M F 2007 Appl. Phys. Lett. 91 022908 [10] You H C, Hsu T H, Ko F H, Huang W J, Yang W L and Lei T F 2006 IEEE Electron Device Lett. 27 653 [11] Maikap S, Lee H Y, Wang T Y, Tzeng P J, Wang C C, Lee L S, Liu K C, Yang J R and Tsai M J 2007 Semicond. Sci. Technol. 22 884 [12] Huang X D, Shi R P and Lai P T 2014 Appl. Phys. Lett. 104 162905 [13] Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S and Tsai M J 2008 IEEE Electron Device Lett. 29 265 [14] Huang X D, Sin J K O and Lai P T 2011 IEEE Trans. Electron Devices 58 4235 [15] Bagatin M and Gerardin S 2015 Microelectron. Reliab. 55 24 [16] Gerardin S, Bagatin M, Paccagnella A, Grurmann K, Gliem F, Oldham T R, Irom F and Nguyen D N 2013 IEEE Trans. Nucl. Sci. 60 1953 [17] Adams D A, Mavis D, Murray J R and White M H 2001 IEEE Aerospace Conference Proceedings, March 10-17, 2001, Big Sky, USA, p. 2295 [18] Adams D A, Smith J T, Murray J R, White M H, Wrazien S, Grant G and Dame J 2005 Symposium Non-Volatile Memory Technology, November 10, 2005, Dallas, USA, p. 31 [19] Puchner H, Ruths P, Prabhakar V, Kouznetsov I and Geha S 2014 IEEE Trans. Nucl. Sci. 61 3005 [20] Gerardin S, Bagatin M, Paccagnella A, Visconti A and Greco E 2011 IEEE Trans. Nucl. Sci. 58 827 [21] Xiao T P, Bennett C H, Agarwal S, Hughart D R, Barnaby H J, Puchner H, Talin A A and Marinella M J 2021 IEEE Trans. Nucl. Sci. 69 406 [22] Zhu C, Huo Z, Xu Z, Zhang M, Wang Q, Liu J, Long S and Liu M 2010 Appl. Phys. Lett. 97 253503 [23] Yoo J, Kim S, Jeon W, Park A, Choi D and Choi B 2019 IEEE Electron Device Lett. 40 1427 [24] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818 [25] Felix J A, Fleetwood D M, Schrimpf R D, Hong J G, Lucovsky G, Schwank J R and Shaneyfelt M R 2002 IEEE Trans. Nucl. Sci. 49 3191 [26] Winokur P S, Schwank J R, Mcwhorter P J, Dressendorfer P V and Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453 [27] He X L and Geer R E 2013 IEEE Aerospace Conference, May 13, 2013, Big Sky, USA, p. 1 [28] Bersuker G, Gilmer D C, Veksler D, Kirsch P, Vandelli L, Padovani A, Larcher L, McKenna K, Shluger A, Iglesias V, Porti M and Nafría M 2011 J. Appl. Phys. 110 124518 [29] Li Z Z, Liu J, Zhai P F, Liu T Q, Bi J S, Zhang Z X, Zhang S X, Hu P P, Xu L J, Zeng J and Sun Y M 2019 IEEE Electron Device Lett. 40 1634 [30] Wu J, Register L F and Rosenbaum E 1999 IEEE International Reliability Physics Symposium Proceedings 37$th Annual, March 23-25, 1999, San Diego, USA, p. 389 [31] Suzuki E, Schroder D K and Hayashi Y 1986 J. Appl. Phys. 60 3616 [32] Hill R M 1971 Philos. Mag. 23 59 [33] Specht M, Städele M, Jakschik S and Schröder U 2004 Appl. Phys. Lett. 84 3076 [34] Lundström I and Svensson C 1972 J. Appl. Phys. 43 5045 [35] Houng M P, Wang Y H and Chang W J 1999 J. Appl. Phys. 86 1488 [36] Chou A I, Lai K, Kumar K, Chowdhury P and Lee J C 1997 Appl. Phys. Lett. 70 3407 [37] Massengill L W, Choi B K, Fleetwood D M, Schrimpf R D, Galloway K F, Shaneyfelt M R, Meisenheimer T L, Dodd P E, Schwank J R, Lee Y M, Johnson R S and Lucovsky G 2001 IEEE Trans. Nucl. Sci. 48 1904 [38] Ceschia M, Paccagnella A, Turrini M, Candelori A, Ghidini G and Wyss J 2000 IEEE Trans. Nucl. Sci. 47 2648 [39] Ma Y, Yang Z, Gong M, Gao B, Li Y, Lin W, Li J and Xia Z 2016 Nucl. Instrum. Methods Phys. Res., Sect. B 383 160 [40] Marinoni M, Touboul A D, Zander D, Petit C, Wrobel F, Carvalho A M J F, Arinero R, Ramonda M, Saigne F, Weulersse C, Buard N, Carriere T and Lorfevre E 2008 IEEE Trans. Nucl. Sci. 55 2970 [41] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P and Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833 [42] Khalfaoui N, Stoquert J P, Haas F, Traumann C, Meftah A and Toulemonde M 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 286 247 [43] Rymzhanov R A, Medvedev N and Volkov A E 2017 J. Phys. D: Appl. Phys. 50 475301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|