INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: A trade-off of electrical effects |
Ye Tu(涂野)1, Yong Li(李勇)2, and Guanchao Yin(殷官超)1,† |
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; 2 Faculty of Physics, University of Duisburg-Essen and CENIDE, Forsthausweg 2, D-47057 Duisburg, Germany |
|
|
Abstract Back interface passivation reduces the back recombination of photogenerated electrons, whereas aggravates the blocking of hole transport towards back contact, which complicate the back interface engineering for ultrathin CIGSe solar cells with a Schottky back contact. In this work, theoretical explorations were conducted to study how the two contradictory electrical effects impact cell performance. For ultrathin CIGSe solar cells with a pronounced Schottky potential barrier (Eh> 0.2 eV), back interface passivation produces diverse performance evolution trends, which are highly dependent on cell structures and properties. Since a back Ga grading can screen the effect of reduced recombination of photogenerated electrons from back interface passivation, the hole blocking effect predominates and back interface passivation is not desirable. However, when the back Schottky diode merges with the main pn junction due to a reduced absorber thickness, the back potential barrier and the hole blocking effect is much reduced on this occasion. Consequently, cells exhibit the same efficiency evolution trend as ones with an Ohmic contact, where back interface passivation is always advantageous. The discoveries imply the complexity of back interface passivation and provide guidance to manipulate back interface for ultrathin CIGSe solar on TCOs with a pronounced Schottky back contact.
|
Received: 29 November 2022
Revised: 25 January 2023
Accepted manuscript online: 02 March 2023
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
73.40.Mr
|
(Semiconductor-electrolyte contacts)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51802240). |
Corresponding Authors:
Guanchao Yin
E-mail: guanchao.yin@whut.edu.cn
|
Cite this article:
Ye Tu(涂野), Yong Li(李勇), and Guanchao Yin(殷官超) Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: A trade-off of electrical effects 2023 Chin. Phys. B 32 068101
|
[1] Lundberg O, Bodegard M, Malmstrom J and Stolt L2003 Progress in Photovoltaics 11 77 [2] Gloeckler M and Sites J R2005 J. Appl. Phys. 98 103703 [3] Bouttemy M, Tran-Van P, Gerard I, Hildebrandt T, Causier A, Pelouard J L, Dagher G, Jehl Z, Naghavi N, Voorwinden G, Dimmler B, Powalla M, Guillemoles J F, Lincot D and Etcheberry A2011 Thin Solid Films 519 7207 [4] Kaelin M, Rudmann D and Tiwari A N2004 Solar Energy 77 749 [5] Vermang B, Watjen J T, Fjallstrom V, Rostvall F, Edoff M, Kotipalli R, Henry F and Flandre D2014 Progress in Photovoltaics 22 1023 [6] Tao C S, Jiang J C and Tao M2011 Solar Energy Materials and Solar Cells 95 3176 [7] Haegel N M, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, Green M, Glunz S, Henning H M, Holder B, Kaizuka I, Kroposki B, Matsubara K, Niki S, Sakurai K, Schindler R A, Tumas W, Weber E R, Wilson G, Woodhouse M and Kurtz S2017 Science 356 141 [8] Ochoa M, Yang S C, Nishiwaki S, Tiwari A N and Carron R2022 Adv. Energy Mater. 12 2102800 [9] Kim G, Kim W M, Park J K, Kim D, Yu H and Jeong J H2019 Acs Appl. Mater. Interface 11 31923 [10] Ou C Y, Som S, Lu C H, Gupta K K and Chaurasiya R2021 J. Alloys Compd. 881 160377 [11] Yin G C, Brackmann V, Hoffmann V and Schmid M2015 Solar Energy Materials and Solar Cells 132 142 [12] Mansfield L M, Kanevce A, Harvey S P, Bowers K, Beall C, Glynn S and Repins I L2018 Progress in Photovoltaics 26 949 [13] Yin G C, Song M, Duan S, Manley P, Greiner D, Kaufmann C A and Schmid M2016 ACS Appl. Mater. Interfaces 8 31646 [14] Bose S, Cunha J M V, Suresh S, De Wild J, Lopes T S., Barbosa J R S, Silva R, Borme J, Fernandes P A, Vermang B and Salome P M P2018 Solar RRL 2 1800212 [15] Vermang B, Fjallstrom V, Pettersson J, Salome P and Edoff M2013 Solar Energy Materials and Solar Cells 117 505 [16] Casper P, Hunig R, Gomard G, Kiowski O, Reitz C, Lemmer U, Powalla M and Hetterich M2016 Physica Status Solidi-Rapid Research Letters 10 376 [17] Jarzembowski E, Fuhrmann B, Leipner H, Franzel W and Scheer R2017 Thin Solid Films 633 61 [18] Kotipalli R, Poncelet O, Li G, Zeng Y, Francis L A, Vermang B and Flandre D2017 Solar Energy 157 603 [19] Salome P M P, Vermang B, Ribeiro-Andrade R, Teixeira J P, Cunha J M V, Mendes M J, Haque S, Borme J, Aguas H, Fortunato E, Martins R, Gonzalez J C, Leitao J P, Fernandes P A, Edoff M and Sadewasser S 2018 Adv. Mater. Interfaces 5 10 [20] Rezaei N, Isabella O, Vroon Z and Zeman M2018 Opt. Express 26 A39 [21] Cunha J M V, Oliveira K, Lontchi J, Lopes T S, Curado M A, Barbosa J R S, Vinhais C, Chen W C, Borme J, Fonseca H, Gaspar J, Flandre D, Edoff M, Silva A G, Teixeira J P, Fernandes P A and Salome P M P 2021 Solar RRL 5 13 [22] Lontchi J, Zhukova M, Kovacic M, Krc J, Chen W C, Edoff M, Bose S, Salome P M P, Goffard J, Cattoni A, Gouillart L, Collin S, Gusak V and Flandre D2020 IEEE Journal of Photovoltaics 10 1908 [23] Nakada T, Hirabayashi Y, Tokado T, Ohmori D and Mise T2004 Solar Energy 77 739 [24] Heinemann M D, Efimova V, Klenk R, Hoepfner B, Wollgarten M, Unold T, Schock H W and Kaufmann C A2015 Progress in Photovoltaics 23 1228 [25] Li Y, Yin G C, Gao Y, Kohler T, Lucassen J and Schmid M 2021 Solar Energy Materials and Solar Cells 223 6 [26] Shin M J, Park S, Lee A, Park S J, Cho A, Kim K, Ahn S K, Park J H, Yoo J, Shin D, Jeong I, Yun J H, Gwak J and Cho J S 2021 Appl. Surf. Sci. 535 9 [27] Li Y, Yin G C and Schmid M 2022 Solar Energy Materials and Solar Cells 234 9 [28] Larsen J K, Simchi H, Xin P, Kim K and Shafarman W N2014 Appl. Phys. Lett. 104 033901 [29] Simchi H, Larsen J K, Kim K and Shafarman W N2014 IEEE Journal of Photovoltaics 4 1630 [30] Shin M J, Lee A, Cho A, Kim K, Ahn S K, Park J H, Yoo J, Yun J H, Gwak J, Shin D, Jeong I and Cho J S 2021 Nano Energy 82 10 [31] Kim D, Shin S S, Lee S M, Cho J S, Yun J H, Lee H S and Park J H 2020 Adv. Funct. Mater. 30 14 [32] Jeong W S, Lee J W, Jung S, Yun J H and Park N G2011 Solar Energy Materials and Solar Cells 95 3419 [33] Simchi H, McCandless B E, Meng T and Shafarman W N 2014 J. Appl. Phys. 115 8 [34] Saifullah M, Kim K, Shahzad R, Gwak J, Cho J S, Yoo J S, Yun J H and Park J H2018 Solar Energy Materials and Solar Cells 178 29 [35] Son Y S, Yu H, Park J K, Kim W M, Ahn S Y, Choi W, Kim D and Jeong J H2019 J. Phys. Chem. C 123 1635 [36] Tu Y, Li Y, Klenk R, Yin G C and Schmid M2022 Progress in Photovoltaics 30 393 [37] Chantana J, Arai H and Minemoto T2016 J. Appl. Phys. 120 045302 [38] Hsiao K J, Liu J D, Hsieh H H and Jiang T S2013 Phys. Chem. Chem. Phys. 15 18174 [39] Zhang X F, Kobayashi M and Yamada A2017 ACS Appl. Mater. Interfaces 9 16215 [40] Li Y, Yin G C, Tu Y, Sedaghat S, Gao Y and Schmid M 2021 ACS Appl. Energy Mater. 7 9 [41] Burgelman M, Nollet P and Degrave S2000 Thin Solid Films 361-362 527 [42] Abou-Ras D, Bar M, Caballero R, Gunder R, Hages C, Heinemann M D, Kaufmann C A, Krause M, Levcenko S, Mainz R, Marquez J, Nikolaeva A, Redinger A, Schafer N, Schorr S, Stange H, Unold T and Wilks R G2018 Solar Energy 170 102 [43] Stanbery B J, Abou-Ras D, Yamada A and Mansfield L2022 J. Phys. D: Appl. Phys. 55 173001 [44] Niemegeers A, Burgelman M, Herberholz R, Rau U, Hariskos D and Schock H W1998 Rogress in Photovoltaics: Research and Applications P 6 407 [45] Klenk R2001 Thin Solid Films 387 135 [46] Yin G C 2015 Preparation of Ultra-Thin CuIn1-xGaxSe2 Solar Cells and Their Light Absorption Enhancement, Ph.D. Dissertation (Tech497 Nische Universitaet, Berlin, Germany) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|