Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037701    DOI: 10.1088/1674-1056/ac7f8e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferroelectricity induced by the absorption of water molecules on double helix SnIP

Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅)
School of Physics, Southeast University, Nanjing 211189, China
Abstract  We study the ferroelectricity in a one-dimensional (1D) system composed of a double helix SnIP with absorbing water molecules. Our ab initio calculations reveal two factors that are critical to the electrical polarization. The first one is the orientation of polarized water molecules staying in the R2 region of SnIP. The second one is the displacement of I atom which roots from subtle interaction with absorbed water molecules. A reasonable scenario of polarization flipping is proposed in this study. In the scenario, the water molecule is rolling-up with keeping the magnitude of its electrical dipole and changing its direction, meanwhile, the displacement of I atoms is also reversed. Highly tunable polarization can be achieved by applying strain, with 26.5% of polarization enhancement by applying tensile strain, with only 4% degradation is observed with 4% compressive strain. Finally, the direct band gap is also found to be correlated with strain.
Keywords:  ferroelectricity      one-dimensional double helix      electrical polarization      density functional theory  
Received:  06 May 2022      Revised:  06 July 2022      Accepted manuscript online:  08 July 2022
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210198), the National Natural Science Foundation of China (Grant No. 12204095), the Fundamental Research Funds for the Central Universities (Grant No. 2242022R10197), and the National Natural Science Foundation of China (Grant No. 11834002). Computational Resources for Most Calculations have been Provided by the Michigan State University High Performance Computing Center.
Corresponding Authors:  Dan Liu     E-mail:  liudan2@seu.edu.cn

Cite this article: 

Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅) Ferroelectricity induced by the absorption of water molecules on double helix SnIP 2023 Chin. Phys. B 32 037701

[1] Rabe K M, Ahn C and Triscone J M 2007 2004 Science 306 1005
[3] Fei R, Kang W and Yang L 2016 Phys. Rev. Lett. 117 097601
[4] Tian Z, Guo C, Zhao M, Li R and Xue J 2017 ACS Nano 11 2219
[5] Wang H and Qian X 2017 2D Mater. 4 015042
[6] Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J and Duan C 2020 Adv. Elec. Mater. 6 1900818
[7] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Comm. 8 14956
[8] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commum. 7 12357
[9] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P A and Zhang X 2018 Phys. Rev. Lett. 120 227601
[10] Li L and Wu M 2017 ACS Nano 11 6382
[11] Ding N, Chen J, Gui C, You H, Yao X and Dong S 2021 Phys. Rev. Materials 5 084405
[12] Song S, Zhang Y, Guan J and Dong S 2021 Phys. Rev. B 103 L140104
[13] Wang Z, Ding N, Gui C, Wang S, An M and Dong S 2021 Phys. Rev. Materials 5 074408
[14] Ding N, Chen J, Dong S and Stroppa A 2020 Phys. Rev. B 102 165129
[15] Lin L, Zhang Y, Moreo A, Dagotto E and Dong S 2019 Phys. Rev. Lett. 123 067601
[16] You Lu, Zhang Y, Zhou S, Chaturvedi A, Morris S A, Liu F, Chang L, Ichinose D, Funakubo H, Hu W, Wu T, Liu Z, Dong S and Wang J 2019 Sci. Adv. 5 eaav3780
[17] Wu M, Burton J D, Tsymbal E Y, Zeng X C and Jena P 2013 Phys. Rev. B 87 081406(R)
[18] Kan E, Wu F, Deng K and Tang W 2013 Appl. Phys. Lett. 103 193103
[19] Lin L, Zhang Y, Moreo A, Dagotto E and Dong S 2019 Phys. Rev. Materials 3 111401(R)
[20] Hernandez Y, Pang S, Feng X and Mullen K 2012 Polymer Science: A Comprehensive Reference 8 415
[21] Iijima S and Ichihashi T 1993 Nature 363 603
[22] Iijima S 1991 Nature 354 56
[23] Ren Y and Wu M 2021 J. Chem. Phys. 154 044705
[24] Zhang J, Guan J, Dong S and Yakobson B I 2019 J. Am. Chem. Soc. 141 15040
[25] Zhang L, Tang C, Sanvito S and Du A 2021 Npj Comput. Mater. 7 135
[26] Zhao H, Kong X, Li H, Jin Y, Long L, Zeng X, Huang R and Zheng L 2011 Proc. Natl. Acad. Sci. USA 108 3481
[27] Pfister D, Schafer K, Ott C, Gerke B, Pottgen R, Janka O, Baumgartner M, Efimova A, Hohmann A, Schmidt P, Venkatachalam S, van Wullen L, Schurmann U, Kienle L, Duppel V, Parzinger E, Miller B, Becker J, Holleitner A, Weihrich R and Nilges T 2016 Adv. Mater. 28 9783
[28] Hoff D A and Rego L G C 2021 Nano Lett. 21 8190
[29] Artacho E, Anglada E, Dieguez O, Gale J D, Garcia A, Junquera J, Martin R M, Ordejon P, Pruneda J M, Sanchez-Portal D and Soler J M 2008 J. Phys.: Condens. Matter 20 064208
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Ceperley D M and Alder B J 2016 Phys. Rev. Lett. 45 566
[32] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[33] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[34] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
[35] Resta R, Posternak M and Baldereschi A 1993 Phys. Rev. Lett. 70 1010
[36] Resta R and Vanderbilt D 2007 Physics of Ferroelectrics. Topics in Applied Physics 105 31
[37] Lee K, Yu J and Morikawa Y 2007 Phys. Rev. B 75 045402
[38] Liu D, Guan J, Jiang J and Tomanek D 2016 Nano Lett. 16 7865
[39] Ren X 2004 Nat. Mater. 3 91
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[5] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[8] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[9] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[10] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[11] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[14] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!