Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064212    DOI: 10.1088/1674-1056/acb203
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Two-photon absorption of FAPbBr3 perovskite nanocrystals

Xuanyu Zhang(张轩宇)1, Shuyu Xiao(肖书宇)2, Xiongbin Wang(王雄彬)1, Tingchao He(贺廷超)2, and Rui Chen(陈锐)1,†
1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  Perovskite nanocrystals (NCs) with high two-photon absorption (TPA) cross-section are of great interest due to their potential applications in three-dimensional optical data storage and multiphoton fluorescence microscopy. Among various perovskite materials, FAPbBr$_{3}$ NCs show a better development prospect due to their excellent stability. However, there are few reports on their nonlinear optical properties. In this work, the nonlinear optical behavior of FAPbBr$_{3}$ NCs is studied. The methods of multiphoton absorption photoluminescence saturation and open aperture $Z$-scan technique were applied to determine the TPA cross-section of FAPbBr$_{3}$ NCs, which was around $2.76 \times 10^{-45}$ cm$^{4}\cdot$s$\cdot $photon$^{-1}$ at 800 nm. In addition, temperature-dependent photoluminescence induced by TPA was investigated, and the small longitudinal optical phonon energy and electron-phonon coupling strength was obtained, which confirm the weak Pb-Br interaction. Meanwhile, it is found that the exciton binding energy in FAPbBr$_{3}$ NCs was 69.668 meV, which may be ascribed to the strong hydrogen bond interaction. It is expected that our findings will promote the application of FAPbBr$_{3}$ NCs in optoelectronic devices.
Keywords:  FAPbBr3 nanocrystals      two-photon absorption cross-section      Z-scan      multiphoton absorption photoluminescence saturation  
Received:  12 December 2022      Revised:  07 January 2023      Accepted manuscript online:  11 January 2023
PACS:  42.65.-k (Nonlinear optics)  
  42.62.Fi (Laser spectroscopy)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62174079) and the Fund from the Science, Technology, and Innovation Commission of Shenzhen Municipality (Grant Nos. JCYJ20220530113015035, JCYJ20210324120204011, JCYJ20190808121211510, and KQTD2015071710313656).
Corresponding Authors:  Rui Chen     E-mail:  chenr@sustech.edu.cn

Cite this article: 

Xuanyu Zhang(张轩宇), Shuyu Xiao(肖书宇), Xiongbin Wang(王雄彬), Tingchao He(贺廷超), and Rui Chen(陈锐) Two-photon absorption of FAPbBr3 perovskite nanocrystals 2023 Chin. Phys. B 32 064212

[1] Sumalekshmy S and Fahrni C J2011 Chem. Mater. 23 483
[2] Dahlstedt E, Collins H A, Balaz M, Kuimov M K, Khurana M, Wilson B C, Phillips D and Anderson H L2009 Org. Biomol. Chem. 7 897
[3] Heinemann F, Karges J and Gasser G2017 Acc. Chem. Res. 50 2727
[4] Sánchez E J, Novotny L, Holtom G R and Xie X S1997 J. Phys. Chem. A 101 7019
[5] Mohanty S K, Reinscheid R K, Liu X, Okamura N, Krasieva T B and Berns W B2008 Biophys. J. 95 3916
[6] Bethge P, Chéreau R, Avignone E, Marsicano G and Nägerl U V2013 Biophys. J. 104 778
[7] He G S, Xu G C, Prasad P N, Reinhardt B A, Bhatt J C and Dillard A G1995 Opt. Lett. 20 435
[8] Chong E, Watson T and Festy F2014 Appl. Phys. Lett. 105 062111
[9] Cumpston B H, Ananthavel P S, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu X L, Marder S R and Perry J W1999 Nature 398 51
[10] Yong K T, Qian J, Roy I, Lee H H, Bergey E J, Tramposch K M, He S, Swihart M T, Maitra A and Prasad P N2007 Nano Lett. 7 761
[11] Albota M, Beljonne D, Brédas J L, Ehrlich J E, Fu J Y, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, Mccord-Maughon D, Perry J W, Röckel H, Rumi M, Subramaniam G, Webb W W, Wu X L and Xu C1998 Science 281 1653
[12] Albota M A, Xu C and Webb W W1998 Appl. Opt. 3 735
[13] Zhu B, Zhang H C, Zhang Z Y, Cui Y P and Zhang J Y2011 Appl. Phys. Lett. 99 021908
[14] Zhu B H, Zhang H C, Zhang Z Y, Cui Y P and Zhang J Y2011 Appl. Phys. Lett. 99 231903
[15] Chen J, Žídek K, Chábera P, Liu D, Cheng P, Nuuttila L, Al-Marri M J, Lehtivuori H, Messing M E, Han K, Zheng K and Pullerits T2017 J. Phys. Chem. Lett. 8 2316
[16] Walters G, Sutherland B R, Hoogland S, Shi D, Comin R, Sellan D P, Bakr O M and Sargent E H2015 ACS Nano 9 9340
[17] Chen W, Bhaumik S, Veldhuis S A, Xing G, Xu Q, Grätzel M, Mhaisalkar S, Mathews N and Sum T C 2017 Nat. Commun. 8 15198
[18] Zaręba J K, Nyk M and Samoć M2021 Adv. Opt. Mater. 9 2100216
[19] Liu Z, Hu P, Zhang Z, Du J, Yang J, Tang X, Liu W and Leng Y2019 ACS Photon. 6 3150
[20] Yang L, Wei K, Xu Z, Li F, Chen R, Zheng X, Cheng X and Jiang T2018 Opt. Lett. 43 122
[21] Minh D N, Kim J, Hyon J, Sim J H, Sowlih H H, Seo C, Nam J, Eom S, Suk S, Lee S, Kim E and Kang Y2017 Chem. Mater. 29 5713
[22] Zhang F, Yang B, Zheng K, Yang S, Li Y, Deng W and He R 2018 Nano-Micro Lett. 10 43
[23] Zhang X, Xiao S, Li R, He T and Chen R2020 Photon. Res. 8 A25
[24] Zu Y, Xi J, Li L, Dai J, Wang S, Yun F, Jiao B, Dong H, Hou X and Wu Z2019 ACS Appl. Mater. Interfaces 12 2835
[25] Protesescu L, Yakunin S, Bodnarchuk M I, Bertolotti F, Masciocchi N, Guagliardi A and Kovalenko M V2016 J. Am. Chem. Soc. 138 14202
[26] Wang J, Song C, He Z, Mai C, Xie G, Mu L, Cun Y, Li J, Wang J, Peng J and Cao Y2018 Adv. Mater. 30 1804137
[27] Alo A A, Barros L W T, Nagamine G, Vieira L B, Chang J H, Jeong B G, Bae W K and Padilha L A2020 ACS Photon. 7 1806
[28] Klimov V I2007 Annu. Rev. Phys. Chem. 58 635
[29] Sheik-Bahae M, Said A A, Wer T H, Hagan D J and Van Stryland E W1990 IEEE J. Quantum Electron. 26 760
[30] Li X, Embden J, Chon J W M and Gu M2009 Appl. Phys. Lett. 94 103117
[31] Pramanik A, Gates K, Gao Y, Begum S and Ray P C2019 J. Phys. Chem. C 123 5150
[32] Li J, Ren C, Qiu X, Lin X, Chen R, Yin C and He T2018 Photon. Res. 6 554
[33] He T, Li J, Qiu X, Xiao S and Lin X2018 Photon. Res. 6 1021
[34] Krishnakanth K N, Seth S, Samanta A and Rao S V2019 Nanoscale 11 945
[35] Zhao F, Li J, Yu J, Guo Z, Xiao S, Gao Y, Pan R, He T and Chen R2020 J. Phys. Chem. C 124 27169
[36] Szeremeta J, Antoniak M A, Wawrzyńczyk D, Nyk M and Samoć M2020 Nanomaterials 10 1054
[37] Lu W G, Chen C, Han D, Yao L, Han J, Zhong H and Wang Y2016 Adv. Opt. Mater. 4 1732
[38] Zhang W, Peng L, Liu J, Tang A, Hu J S, Yao J and Zhao Y S2016 Adv. Mater. 28 4040
[39] Krishnakanth K N, Seth S, Samanta A and Rao S V2019 Nanoscale 11 945
[40] Li J, Zhao F, Xiao S, Cheng J, Qiu X, Lin X, Chen R and He T2019 Opt. Lett. 44 3873
[41] Liu Y Q, Cui H L and Wei D2018 J. Phys. Chem. C 122 4150
[42] Govinda S, Kore B P, Swain D, Hossain A, De C, Row T N G and Sarma D D2018 J. Phys. Chem. C 122 13758
[43] Varshni Y P1967 Physica 34 149
[44] Wang X, Wang Q, Chai Z and Wu W2020 RSC Adv. 10 44373
[45] Dai J, Zheng H, Zhu C, Lu J and Xu C2016 J. Mater. Chem. C 4 4408
[46] Zhang X Y, Pang G T, Xing G C and Chen R2020 Mater. Today Phys. 15 100259
[47] Lindblad R, Jena N K, Philippe B, Oscarsson J, Bi D, Lindblad A, Mandal S, Pal B, Sarma D D, Karis O, Siegbahn H, Johansson E M J, Odelius M and Rensmo H2015 J. Phys. Chem. C 119 1818
[48] Zhu H, Miyata K, Fu Y, Wang J, Joshi P P, Niesner D, Williams K W, Jin S and Zhu X Y2016 Science 353 1409
[49] Munson K T, Swartfager J R, Gan J and Asbury J B2020 J. Phys. Chem. Lett. 11 3166
[50] Badorreck H, Nolte S, Freytag F, Bäune P, Dieckmann V and Imlau M2015 Opt. Mater. Express 5 2729
[51] Galkowski K, Mitioglu A, Miyata A, Plochocka P, Portugall O, Eperon G E, Wang J T W, Stergiopoulos T, Stranks S D, Snaith H J and Nicholas R J2016 Energy Environ. Sci. 9 962
[52] Han D, Imran M, Zhang M, Chang S, Wu X G, Zhang X, Tang J, Wang M, Ali S, Li X, Yu G, Han J, Wang L, Zou B and Zhong H2018 ACS Nano 12 8808
[53] Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A and Bongiovanni G2015 J. Phys. Chem. Lett. 6 4566
[54] Shulenberger K E, Ashner M N, Ha S K, Krieg F, Kovalenko M V, Tisdale W A and Bawendi M G2019 J. Phys. Chem. Lett. 10 5680
[55] Zhang X, Guo Z, Li R, Yu J, Yuan B, Chen B, He T and Chen R2021 ACS Appl. Mater. Interfaces 13 58170
[56] Jia C, Li H, Meng X and Li H2018 Chem. Commun. 53 6300
[57] Dong Y, Yan D, Yang S, Wei N, Zou Y and Zeng H2023 Chin. Phys. B 32 018507
[58] Ma W, Ding C, Wazir N, Wang X, Kong S, Li A, Zou B and Liu R2022 Chin. Phys. B 31 037802
[1] Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption
Allam Srinivasa Rao. Chin. Phys. B, 2019, 28(2): 024211.
[2] Optical nonlinearities of tetracarbonyl-chromium triphenyl phosphine complex
M D Zidan, A W Allaf, A Allahham, A AL-Zier. Chin. Phys. B, 2017, 26(4): 044205.
[3] Role of the aperture in Z-scan experiments: A parametric study
M. R. Rashidian Vaziri. Chin. Phys. B, 2015, 24(11): 114206.
[4] Z-scan analysis of high-order nonlinear refraction effect induced by using elliptic Gaussian beam
Guo Shi-Fang(郭世方) and Tian Qiang(田强). Chin. Phys. B, 2010, 19(6): 067802.
[5] Orientation-enhanced nonlinear optical properties and phase-conjugate reflective system of a novel Azobenzene doped polymer film
Xie Ru-Sheng(谢茹胜), Fan Wen-Bin(范文彬), Lu Ming(陆明), and Zhao You-Yuan(赵有源) . Chin. Phys. B, 2007, 16(9): 2725-2730.
[6] Nonlinear optical properties in double-sided nonlinear media with Z-scan technique based on the Huygens--Fresnel principle
Ouyang Qiu-Yun(欧阳秋云), Zhang Xue-Ru(张学如), Jiang Li(蒋礼), Chang Qing(常青), Wang Yu-Xiao(王玉晓), and Song Ying-Lin(宋瑛林). Chin. Phys. B, 2006, 15(8): 1810-1814.
[7] Large third-order optical nonlinearity in Au nanometre particle doped BaTiO3 composite films near the resonant frequency
Wang Wei-Tian (王伟田), Yang Guang (杨光), Chen Zheng-Hao (陈正豪), Zhou Yue-Liang (周岳亮), Lü Hui-Bin (吕惠宾), Yang Guo-Zhen (杨国桢). Chin. Phys. B, 2002, 11(12): 1324-1327.
No Suggested Reading articles found!