Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 074205    DOI: 10.1088/1674-1056/accb41
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal

Xiaorong Wang(王晓蓉)1,2, Hongming Fei(费宏明)1,2,†, Han Lin(林瀚)3,‡, Min Wu(武敏)1,2, Lijuan Kang(康丽娟)1,2, Mingda Zhang(张明达)1,2, Xin Liu(刘欣)1,2, Yibiao Yang(杨毅彪)1,2, and Liantuan Xiao(肖连团)1,2
1 College of Physics, Taiyuan University of Technology, Taiyuan 030024, China;
2 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
3 School of Science, RMIT University, Melbourne, Victoria 3000, Australia
Abstract  For all-optical communication and information processing, it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations. All-optical logic gates have been demonstrated based on conventional waveguides and interferometry, as well as photonic crystal structures. Nonetheless, any defects in those structures will introduce high scattering loss, which compromises the fidelity and contrast ratio of the information process. Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals (VPCs), we propose a high-performance all-optical logic OR gate based on a VPC structure. By tuning the working bandwidth of the two input channels, we prevent interference between the two channels to achieve a stable and high-fidelity output. The transmittance of both channels is higher than 0.8, and a high contrast ratio of 28.8 dB is achieved. Moreover, the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs, representing "1" or "0", which is highly desired in quantum computing. The device's footprint is 18 μm×12 μm, allowing high-density on-chip integration. In addition, this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication, information processing, and quantum computing.
Keywords:  topological photonics      topological edge state      valley photonic crystal      all-optical logic gate  
Received:  26 December 2022      Revised:  03 April 2023      Accepted manuscript online:  07 April 2023
PACS:  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.70.Qs (Photonic bandgap materials)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2022YFA1404201), the National Natural Science Foundation of China (Grant No. 11904255), and the Key Research and Development Program of Shanxi Province (International Cooperation) (Grant No. 201903D421052).
Corresponding Authors:  Hongming Fei, Han Lin     E-mail:  feihongming@tyut.edu.cn;han.lin2@rmit.edu.au

Cite this article: 

Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团) High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal 2023 Chin. Phys. B 32 074205

[1] Panoiu N C, Bahl M and Osgood R M 2004 Opt. Express. 12 1605
[2] Gomez V, Ramirez P, Cervera J, Ali M, Nasir S, Ensinger W and Mafe S 2018 Electrochem. Commun. 88 52
[3] Zhu Y J, Huang X G and Mei X 2012 Chin. Phys. Lett. 29 064214
[4] Zhang Y X, Liao Z Y, Pan J Q, Zhou F, Zhu H L, Zhao L J and Wang W 2009 Chin. Phys. Lett. 26 104208
[5] Tu X, Chen Z M and Fu H Y 2019 Acta Phys. Sin. 68 104210 (in Chinese)
[6] Zhang X, Li Z Q and Tong K 2014 Acta Phys. Sin. 63 094207 (in Chinese)
[7] Han Z H, Jiang H, Tan Z Y, Cao J C and Cai Y J 2020 Chin. Phys. B 29 084209
[8] Wang J H, Chen C M, Hu K W, Cheng R, Wang C X, Yi Y J, Sun X Q, Wang F, Li Z Y and Zhang D M 2019 Chin. Phys. B 28 044207
[9] Chi F, Xu Q and Long X 2021 Front. Phys. 9 819303
[10] Fu W, Xu M R, Liu X W, Zou C L, Zhong C C, Han X, Shen M H, Xu Y T, Cheng R S, Wang S H, Jiang L and Tang H 2021 Phys. Rev. A. 103 053504
[11] Wang Y P, Wu C Q, Wang Z, Wang Y J, Yang S S and Sheng X Z 2009 Chin. Phys. Lett. 26 074219
[12] Shehata M I and Mohammed N A 2016 Opt. Quantum Electron. 48 336
[13] Ma S Z, Chen Z, Sun H Z and Dutta N K 2010 Opt. Express 18 6417
[14] Kotb A, Zoiros K E and Li W 2021 J. Supercomput. 77 14617
[15] Wang J, Sun J Q, Zhang X L, Huang D X and Fejer M M 2009 IEEE J. Quantum Electron. 45 195
[16] Wang J, Sun J Q, Sun Q Z, Wang D L, Zhang X L, Huang D X and Fejer M M 2008 IEEE. Photon. Technol. Lett. 20 211
[17] Xie Y Y, Yin Y Y, Song T T, Zhu Y C, Chai J X, Liu B C and Ye Y C 2022 Optik 255 168684
[18] Law F K, Uddin M R, Chen A T C and Nakarmi B 2020 Opt. Quantum. Electron. 52 314
[19] Zhang L, Ding J F, Tian Y H, Ji R Q, Yang L, Chen H T, Zhou P, Lu Y Y, Zhu W W and Min R 2012 Opt. Express 20 11605
[20] Caballero L P, Povinelli M L, Ramirez J C, Guimaraes P S S and Neto O P V 2022 Opt. Express 30 1976
[21] Sharma A, Goswami K, Mondal H, Datta T and Sen M 2022 Opt. Quantum Electron. 54 90
[22] Hussein H M E, Ali T A and Rafat N H 2018 Opt. Laser Technol. 106 385
[23] Fei H M, Zhang Q, Wu M, Lin H, Liu X, Yang Y B, Zhang M D, Guo R and Han X T 2020 Appl. Opt. 59 4416
[24] Fei H M, Yan S, Wu M, Lin H, Yang Y B, Zhang M D and Han X T 2020 Opt. Commun. 477 126346
[25] Fei H M, Wu M, Xu T, Lin H, Yang Y B, Liu X, Zhang M D and Cao B Z 2018 J. Opt. 20 095004
[26] Fei H M, Wu M, Lin H, Liu X, Yang Y B, Zhang M D and Cao B Z 2019 Superlatt. Microstruct. 132 106155
[27] Fei H M, Wu M, Lin H, Yang Y B, Liu X, Zhang M D and Cao B Z 2020 Photon. Nanostruct. 41 100829
[28] Wu M, Fei H M, Lin H, Zhao X D, Yang Y B and Chen Z H 2021 Acta Phys. Sin. 70 028501 (in Chinese)
[29] Zhi W Q, Fei H M, Han Y H, Wu M, Zhang M D, Liu X, Cao B Z and Yang Y B 2022 Acta Phys. Sin. 71 038501 (in Chinese)
[30] Fei H M, Xu T, Liu X, Lin H, Chen Z H, Yang Y B, Zhang M D, Cao B Z and Liang J Q 2017 Acta Phys. Sin. 66 204103 (in Chinese)
[31] Fei H M, Wu J J, Yang Y B, Liu X and Chen Z H 2015 Photon. Nanostruct. 17 15
[32] Fei H M, Yan S, Xu Y C, Lin H, Wu M, Yang Y B, Chen Z H, Tian Y and Zhang Y M 2020 Acta Phys. Sin. 69 184214 (in Chinese)
[33] Fan R R, Yang X L, Meng X F and Sun X W 2016 J. Phys. D: Appl. Phys. 49 325104
[34] Jalali-Azizpoor M R, Soroosh M and Seifi-Kavian Y 2018 Photon. Netw. Commun. 36 344
[35] Liu W, Yang D, Shen G, Tian H and Ji Y F 2013 Opt. Laser Technol. 50 55
[36] Tang C R, Dou X, Lin Y, Yin H, Wu B and Zhao Q 2014 Opt. Commun. 316 49
[37] Hussein H M E, Ali T A and Rafat N H 2018 Opt. Commun. 411 175
[38] Rao D G S, Swarnakar S, Palacharla V, Raju K S R and Kumar S 2021 Photon. Netw. Commun. 41 109
[39] Alipour-Banaei H, Serajmohammadi S and Mehdizadeh F 2017 Optik 130 1214
[40] Ghadrdan M and Mansouri-Birjandi M A 2013 Opt. Quantum Electron. 45 1027
[50] Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q and Dong J W 2018 Phys. Rev. Appl. 10 044002
[51] Prevedel R, Walther P, Tiefenbacher F, Bohl P, Kaltenbaek R, Jennewein T and Zeilinger A 2007 Nature 445 65
[52] Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W and Ren X F 2021 Phys. Rev. Lett. 126 230503
[41] Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X and Hang Z H 2018 Phys. Rev. Lett. 120 217401
[42] Skirlo S A, Lu L, Igarashi Y C, Yan Q H, Joannopoulos J and Soljacic M 2015 Phys. Rev. Lett. 115 253901
[43] Gao F, Xue H R, Yang Z J, Lai K F, Yu Y, Lin X, Chong Y D, Shvets G and Zhang B L 2018 Nat. Phys. 14 140
[44] Lu J C, Chen X D, Deng W M, Chen M and Dong J W 2018 J. Opt. 20 075103
[45] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[46] Chao M H, Cheng B, Liu Q S, Zhang W J, Xu Y and Song G F 2021 J. Opt. 23 115002
[47] He L, Zhang W X and Zhang X D 2019 Opt. Express 27 25841
[48] Han Y H, Fei H M, Lin H, Zhang Y M, Zhang M D and Yang Y B 2021 Opt. Commun. 488 126847
[49] Wu M, Yang Y B, Fei H M, Lin H, Han Y H, Zhao X D and Chen Z H 2022 Opt. Express 30 6275
[53] Li H H 1980 J. Phys. Chem. Ref. Data 9 561
[1] Theoretical research on the transverse spin of structured optical fields inside a waveguide
Zhiyong Wang(王智勇), Xiangru Wang(汪相如), Anran Li(李岸然), Kaiqiang Zhang(张开强), Yukun Ji(纪玉坤), and Mingyu Zhong(钟明玉). Chin. Phys. B, 2023, 32(6): 064207.
[2] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[3] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[4] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[5] All-optical XNOR and AND gates simultaneously realized in a single semiconductor optical amplifier with improved dynamics
Li Pei-Li(李培丽), Huang De-Xiu(黄德修), Zhang Xin-Liang(张新亮), and Zhu Guang-Xi(朱光喜). Chin. Phys. B, 2007, 16(12): 3719-3727.
No Suggested Reading articles found!