Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 088101    DOI: 10.1088/1674-1056/acc2ae
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure

Ying Zhu(朱盈)1,2, Wang Lin(林旺)1,2, Dong-Shuai Li(李东帅)1,2, Liu-An Li(李柳暗)1,2, Xian-Yi Lv(吕宪义)1,2, Qi-Liang Wang(王启亮)1,2,†, and Guang-Tian Zou(邹广田)1,2,‡
1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2. Shenzhen Research Institute, Jilin University, Shenzhen 518057, China
Abstract  The trench diamond junction barrier Schottky (JBS) diode with a sidewall enhanced structure is designed by Silvaco simulation. Comparing with the conventional trench JBS diode, Schottky contact areas are introduced on the sidewall of the trench beside the top cathode. The sidewall Schottky contact weakens the junction field-effect transistor effect between the trenches to realize a low on-resistance and a high Baliga's figure of merit (FOM) value. In addition, the existence of the n-type diamond helps to suppress the electric field crowding effect and enhance the reverse breakdown voltage. With the optimal parameters of device structure, a high Baliga's FOM value of 2.28 GW/cm2 is designed. Therefore, the proposed sidewall-enhanced trench JBS diode is a promising component for the applications in diamond power electronics.
Keywords:  diamond      Schottky barrier diode      junction terminal extension      simulation  
Received:  24 December 2022      Revised:  25 February 2023      Accepted manuscript online:  09 March 2023
PACS:  81.05.ug (Diamond)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.30.Kk (Junction diodes)  
  88.30.gg (Design and simulation)  
Fund: Project supported by the Key Research and Development Program of Guangdong Province, China (Grant No.2020B0101690001), the Natural Science Foundation of Sichuan Province, China (Grant No.2022NSFSC0886), and the Open Project of State Key Laboratory of Superhard Materials, Jilin Province, China (Grant No.202314).
Corresponding Authors:  Qi-Liang Wang, Guang-Tian Zou     E-mail:  wangqiliang@jlu.edu.cn;gtzou@jlu.edu.cn

Cite this article: 

Ying Zhu(朱盈), Wang Lin(林旺), Dong-Shuai Li(李东帅), Liu-An Li(李柳暗), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), and Guang-Tian Zou(邹广田) High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure 2023 Chin. Phys. B 32 088101

[1] Kwak T, Lee J, Choi U, So B, Yoo G, Kim S and Nam O 2021 Diamond Relat. Mater. 114 108335
[2] Wang J, Zhao D, Wang W, Zhang X, Wang Y, Chang X, Liu Z, Fu J, Wang K and Wang H X 2019 Mater. Sci. Semicond. Process. 97 101
[3] Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[4] Zhao D, Liu Z, Wang J, Yi W, Wang R, Wang W, Wang K and Wang H X 2019 Diamond Relat. Mater. 99 107529
[5] Ueda K, Kawamoto K and Asano H 2014 Jpn. J. Appl. Phys. 53 04EP05
[6] Hanada T, Ohmagari S, Kaneko J H and Umezawa H 2020 Appl. Phys. Lett. 117 262107
[7] Twitchen D J, Whitehead A J, Coe S E, Isberg J, Hammersberg J, Wikstrom T and Johansson E 2004 IEEE Trans. Electron Dev. 51 826
[8] Tarelkin S, Bormashov V, Buga S, Volkov A, Teteruk D, Kornilov N, Kuznetsov M, Terentiev S, Golovanov A and Blank V 2015 Phys. Status Solidi A 212 2621
[9] Butler J E, Geis M W, Krohn K E, Lawless J, Deneault S, Lyszczarz T M, Flechtner D and Wright R 2003 Semicond. Sci. Technol. 18 S67
[10] Driche K, Rugen S, Kaminski N, Umezawa H, Okumura H and Gheeraert E 2018 Diamond Relat. Mater. 82 160
[11] Hull B A, Sumakeris J J, O'Loughlin M J, Zhang Q, Richmond J, Powell A R, Imhoff E A, Hobart K D, Rivera-Lopez A and Hefner A R 2008 IEEE Trans. Electron Dev. 55 1864
[12] Kobayashi A, Ohmagari S, Umezawa H, Takeuchi D and Saito T 2020 Jpn. J. Appl. Phys. 59 089302
[13] Song Q W, Zhang Y M, Zhang Y M, Chen F P and Tang X Y 2011 Chin. Phys. B 20 057301
[14] Konishi K, Kameshiro N, Yokoyama N, Shima A and Shimamoto Y 2017 Jpn. J. Appl. Phys. 56 121301
[15] Wu L, Lei B, Yang H, Song Y and Zhang Y 2018 Superlattices Microstruct. 123 201
[16] Ren N, Wu J, Liu L and Sheng K 2020 IEEE Trans. Electron Dev. 35 11316
[17] Radhakrishnan R, Cueva N, Witt T and Woodin R L 2018 Mater. Sci. Forum 924 621
[18] Kong M, Chen Z, Gao J, Duan Y, Hu Z, Yi B and Yang H 2022 Semicond. Sci. Technol. 37 075008
[19] Wang Q L, Wang T T, Pu T F, Cheng S C, Li X B, Li LA and Ao J P 2022 Chin. Phys. B 31 057702
[20] Lin W, Wang T T, Wang Q L, Lv X Y, Li G Z, Li L A, Ao J P and Zou G T 2022 Chin. Phys. B 31 108105
[21] Li D, Wang T, Lin W, Zhu Y, Wang Q, Lv X, Li L and Zou G 2022 Diamond Relat. Mater. 128 109300
[1] Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳). Chin. Phys. B, 2023, 32(9): 098503.
[2] Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field
Yao-Ting Wang(汪耀庭), Xin-Li Sun(孙鑫礼), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2023, 32(9): 095201.
[3] Anti-Stokes/Stokes temperature calibration and its application in laser-heating diamond anvil cells
Minmin Zhao(赵旻旻), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), and Li Lei(雷力). Chin. Phys. B, 2023, 32(9): 090704.
[4] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[5] Exploring unbinding mechanism of drugs from SERT via molecular dynamics simulation and its implication in antidepressants
Xin-Guan Tan(谭新官), Xue-Feng Liu(刘雪峰), Ming-Hui Pang(庞铭慧), Yu-Qing Wang(王雨晴), and Yun-Jie Zhao(赵蕴杰). Chin. Phys. B, 2023, 32(8): 088702.
[6] Variational quantum simulation of the quantum critical regime
Zhi-Quan Shi(石志全), Xu-Dan Xie(谢旭丹), and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2023, 32(8): 080305.
[7] Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink
Min-Hui Ji(冀敏慧), Xin-Miao Zhang(张欣苗), Meng-Chun Pan(潘孟春), Qing-Fa Du(杜青法), Yue-Guo Hu(胡悦国), Jia-Fei Hu(胡佳飞), Wei-Cheng Qiu(邱伟成), Jun-Ping Peng(彭俊平), Zhu Lin(林珠), and Pei-Sen Li(李裴森). Chin. Phys. B, 2023, 32(7): 078506.
[8] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[9] Current sensor based on diamond nitrogen-vacancy color center
Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊). Chin. Phys. B, 2023, 32(7): 070704.
[10] Features of transport induced by ion-driven trapped-electron modes in tokamak plasmas
Hui Li(李慧), Ji-Quan Li(李继全), Feng Wang(王丰), Qi-Bin Luan(栾其斌),Hong-En Sun(孙宏恩), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2023, 32(7): 075206.
[11] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[12] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[13] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[14] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[15] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
No Suggested Reading articles found!