Special Issue:
SPECIAL TOPIC — Ion beam modification of materials and applications
|
SPECIAL TOPIC—Ion beam modification of materials and applications |
Prev
Next
|
|
|
Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation |
Wen-Si Ai(艾文思)1,2, Jie Liu(刘杰)1,2,†, Qian Feng(冯倩)3,‡, Peng-Fei Zhai(翟鹏飞)1,2, Pei-Pei Hu(胡培培)1,2, Jian Zeng(曾健)1,2, Sheng-Xia Zhang(张胜霞)1,2, Zong-Zhen Li(李宗臻)1,2, Li Liu(刘丽)1,2, Xiao-Yu Yan(闫晓宇)1,2, and You-Mei Sun(孙友梅)1,2 |
1 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China; 2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract The electrical characteristics and microstructures of β-Ga2O3 Schottky barrier diode (SBD) devices irradiated with swift heavy ions (2096 MeV Ta ions) have been studied. It was found that β-Ga2O3 SBD devices showed the reliability degradation after irradiation, including turn-on voltage Von, on-resistance Ron, ideality factor n, and the reverse leakage current density Jr. In addition, the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×106-1.3×107 cm-1. Latent tracks induced by swift heavy ions were observed visually in the whole β-Ga2O3 matrix. Furthermore, crystal structure of tracks was amorphized completely. The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration. Eventually, these defects caused the degradation of electrical characteristics of the devices. In terms of the carrier removal rates, the β-Ga2O3 SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.
|
Received: 08 February 2021
Revised: 18 March 2021
Accepted manuscript online: 23 March 2021
|
PACS:
|
61.80.Jh
|
(Ion radiation effects)
|
|
61.82.Fk
|
(Semiconductors)
|
|
42.88.+h
|
(Environmental and radiation effects on optical elements, devices, and systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019, 11690041, and 12075290), China National Postdoctoral Program for Innovative Talents (Grant No. BX20200340), China Postdoctoral Science Foundation (Grant No. 2020M673539), CAS ''Light of West China" Program, and the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (Grant No. 2020412). |
Corresponding Authors:
Jie Liu, Qian Feng
E-mail: j.liu@impcas.ac.cn;qfeng@mail.xidian.edu.cn
|
Cite this article:
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅) Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation 2021 Chin. Phys. B 30 056110
|
[1] Pearton S, Yang J, Carey P, Ren F, Kim J, Tadjer M and Mastro M 2018 Appl. Phys. Rev. 5 11301 [2] Ueda N, Hosono H, Waseda R and Kawazoe H 1997 Appl. Phys. Lett. 71 933 [3] Zeng K, Vaidya A and Singisetti U 2018 IEEE Electron Device Lett. 39 1385 [4] Reese S B, Remo T, Green J and Zakutayev A 2019 Joule 3 903 [5] Claeys C and Simoen E 2002 Radiation Effects in Advanced Semiconductor Materials and Devices (New York: Springer Berlin Heidelberg) [6] Pearton S J, Ren F, Patrick E, Law M E and Polyakov A Y 2016 ECS J. Solid State Sci. Technol. 5 Q35-60 [7] Pearton S J, Deist R, Ren F, Liu L, Polyakov A Y and Kim J 2013 J. Vac. Sci. Technol. A 31 50801 [8] Janousek B K, Yamada W E, Krantz R J and Bloss W L 1988 J. Appl. Phys. 63 1678 [9] Yang G, Jang S P, Ren F, Pearton S and Kim J 2017 ACS Appl. Mater. Interfaces 9 40471 [10] Kerbiriou X, Costantini J M, Sauzay M, Sorieul S, Thomé L, Jagielski J and Grob J J 2009 J. Appl. Phys. 105 73513 [11] Wendler E, Treiber E, Baldauf J, Wolf S and Ronning C 2016 Nucl. Instrum. Methods B 379 85 [12] Yang J, Chen Z, Ren F, Pearton S, Yang G, Kim J, Lee J, Flitsiyan E, Chernyak L and Kuramata A 2018 J. Vac. Sci. Technol. B 36 11206 [13] Komarov F F 2003 Physics-Uspekhi 46 1253 [14] Aumayr F, Facsko S, El-Said A S, Trautmann C and Schleberger M 2011 J. Phys. Condens. Matter 23 393001 [15] Ai W, Xu L, Nan S, Zhai P, Li W, Li Z, Hu P, Zeng J, Zhang S, Liu L, Sun Y and Liu J 2019 Jpn. J. Appl. Phys. 58 120914 [16] Ziegler J F and Biersack J P 2013 http://www.srim.org/ [17] Wang L, Nathan M I, Lim T, Khan M A and Chen Q 1996 Appl. Phys. Lett. 68 1267 [18] Shur M 1990 Physics of Semiconductor Devices (New Jersey: Prentice Hall, Inc.) [19] Kumar A, Singh R, Kumar P, Singh U, Kandasami A, Karaseov P, Titov A and Kanjilal D 2018 J. Appl. Phys. 123 161539 [20] Kumar S, Katharria Y, Batra Y and Kanjilal D 2007 J. Phys. D: Appl. Phys. 40 6892 [21] Manikanthababu N, Tak B, Kunche P, Sarkar S, Kandasami A, Kanjilal D, Barman R S, Singh R and Panigrahi B 2020 Appl. Phys. Lett. 117 142105 [22] Yang Z, Ma Y, Gong M, Li Y, Huang M, Gao B and Zhao X 2017 Nucl. Instrum. Methods B 401 51 [23] Neamen D A 2011 Semiconductor Physics and Devices: Basic Principles (Boston: McGraw-Hill Co.) [24] Jun B and Subramanian S 2003 IEEE Trans. Nucl. Sci. 49 3222 [25] Polyakov A Y, Smirnov N B, Shchemerov I V, Vasilev A A, Yakimov E B, Chernykh A V, Kochkova A I, Lagov P B, Pavlov Y S, Kukharchuk O F, Suvorov A A, Garanin N S, Lee I H, Xian M, Ren F and Pearton S J 2020 J. Phys. D: Appl. Phys. 53 274001 [26] Yang J, Ren F, Pearton S, Yang G, Kim J and Kuramata A 2017 J. Vac. Sci. Technol. B 35 31208 [27] Yang J, Fares C, Guan Y, Ren F, Pearton S, Bae J, Kim J and Kuramata A 2018 J. Vac. Sci. Technol. B 36 31205 [28] Kumar V, Maan A and Akhtar J 2018 Phys. Status Solidi A 215 1700555 [29] Ma G, Zhang Y, Li H, Liu C, Qi C, Wei Y, Wang T, Dong S and Huo M 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA) Hangzhou, 2019 pp. 1-5 [30] Mikelsen M, Grossner U, Bleka J H, Monakhov E V, Svensson B G, Yakimova R, Henry A, Janzén E and Lebedev A A 2008 2008 Mater. Sci. Forum 600-603 425 [31] Omotoso E, Meyer W E, Auret F D, Diale M and Ngoepe P N M 2016 Physica B 480 196 [32] Yang J, Li H, Dong S and Li X 2019 IEEE Trans. Nucl. Sci. 66 2042 [33] Blanco M, Sahariah M, Jiang H, Costales A and Pandey R 2005 Phys. Rev. B 72 184103 [34] Miceli G and Pasquarello A 2015 Microelectron. Eng. 147 51 [35] Gao F and Weber W J 2002 Nucl. Instrum. Methods B 191 504 [36] Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun Y M and Ma X H 2018 Nucl. Instrum. Methods B 430 59 [37] Toulemonde M, Bouffard S and Studer F 1994 Nucl. Instrum. Methods B 91 108 [38] Rymzhanov R A, Medvedev N, O'Connell J H, Janse van Vuuren A, Skuratov V A and Volkov A E 2019 Sci. Rep. 9 3837 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|