Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056110    DOI: 10.1088/1674-1056/abf107
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation

Wen-Si Ai(艾文思)1,2, Jie Liu(刘杰)1,2,†, Qian Feng(冯倩)3,‡, Peng-Fei Zhai(翟鹏飞)1,2, Pei-Pei Hu(胡培培)1,2, Jian Zeng(曾健)1,2, Sheng-Xia Zhang(张胜霞)1,2, Zong-Zhen Li(李宗臻)1,2, Li Liu(刘丽)1,2, Xiao-Yu Yan(闫晓宇)1,2, and You-Mei Sun(孙友梅)1,2
1 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China;
2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The electrical characteristics and microstructures of β-Ga2O3 Schottky barrier diode (SBD) devices irradiated with swift heavy ions (2096 MeV Ta ions) have been studied. It was found that β-Ga2O3 SBD devices showed the reliability degradation after irradiation, including turn-on voltage Von, on-resistance Ron, ideality factor n, and the reverse leakage current density Jr. In addition, the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×106-1.3×107 cm-1. Latent tracks induced by swift heavy ions were observed visually in the whole β-Ga2O3 matrix. Furthermore, crystal structure of tracks was amorphized completely. The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration. Eventually, these defects caused the degradation of electrical characteristics of the devices. In terms of the carrier removal rates, the β-Ga2O3 SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.
Keywords:  β-Ga2O3 Schottky barrier diode      swift heavy ions      reliability degradation      amorphous latent track  
Received:  08 February 2021      Revised:  18 March 2021      Accepted manuscript online:  23 March 2021
PACS:  61.80.Jh (Ion radiation effects)  
  61.82.Fk (Semiconductors)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019, 11690041, and 12075290), China National Postdoctoral Program for Innovative Talents (Grant No. BX20200340), China Postdoctoral Science Foundation (Grant No. 2020M673539), CAS ''Light of West China" Program, and the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (Grant No. 2020412).
Corresponding Authors:  Jie Liu, Qian Feng     E-mail:;

Cite this article: 

Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅) Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation 2021 Chin. Phys. B 30 056110

[1] Pearton S, Yang J, Carey P, Ren F, Kim J, Tadjer M and Mastro M 2018 Appl. Phys. Rev. 5 11301
[2] Ueda N, Hosono H, Waseda R and Kawazoe H 1997 Appl. Phys. Lett. 71 933
[3] Zeng K, Vaidya A and Singisetti U 2018 IEEE Electron Device Lett. 39 1385
[4] Reese S B, Remo T, Green J and Zakutayev A 2019 Joule 3 903
[5] Claeys C and Simoen E 2002 Radiation Effects in Advanced Semiconductor Materials and Devices (New York: Springer Berlin Heidelberg)
[6] Pearton S J, Ren F, Patrick E, Law M E and Polyakov A Y 2016 ECS J. Solid State Sci. Technol. 5 Q35-60
[7] Pearton S J, Deist R, Ren F, Liu L, Polyakov A Y and Kim J 2013 J. Vac. Sci. Technol. A 31 50801
[8] Janousek B K, Yamada W E, Krantz R J and Bloss W L 1988 J. Appl. Phys. 63 1678
[9] Yang G, Jang S P, Ren F, Pearton S and Kim J 2017 ACS Appl. Mater. Interfaces 9 40471
[10] Kerbiriou X, Costantini J M, Sauzay M, Sorieul S, Thomé L, Jagielski J and Grob J J 2009 J. Appl. Phys. 105 73513
[11] Wendler E, Treiber E, Baldauf J, Wolf S and Ronning C 2016 Nucl. Instrum. Methods B 379 85
[12] Yang J, Chen Z, Ren F, Pearton S, Yang G, Kim J, Lee J, Flitsiyan E, Chernyak L and Kuramata A 2018 J. Vac. Sci. Technol. B 36 11206
[13] Komarov F F 2003 Physics-Uspekhi 46 1253
[14] Aumayr F, Facsko S, El-Said A S, Trautmann C and Schleberger M 2011 J. Phys. Condens. Matter 23 393001
[15] Ai W, Xu L, Nan S, Zhai P, Li W, Li Z, Hu P, Zeng J, Zhang S, Liu L, Sun Y and Liu J 2019 Jpn. J. Appl. Phys. 58 120914
[16] Ziegler J F and Biersack J P 2013
[17] Wang L, Nathan M I, Lim T, Khan M A and Chen Q 1996 Appl. Phys. Lett. 68 1267
[18] Shur M 1990 Physics of Semiconductor Devices (New Jersey: Prentice Hall, Inc.)
[19] Kumar A, Singh R, Kumar P, Singh U, Kandasami A, Karaseov P, Titov A and Kanjilal D 2018 J. Appl. Phys. 123 161539
[20] Kumar S, Katharria Y, Batra Y and Kanjilal D 2007 J. Phys. D: Appl. Phys. 40 6892
[21] Manikanthababu N, Tak B, Kunche P, Sarkar S, Kandasami A, Kanjilal D, Barman R S, Singh R and Panigrahi B 2020 Appl. Phys. Lett. 117 142105
[22] Yang Z, Ma Y, Gong M, Li Y, Huang M, Gao B and Zhao X 2017 Nucl. Instrum. Methods B 401 51
[23] Neamen D A 2011 Semiconductor Physics and Devices: Basic Principles (Boston: McGraw-Hill Co.)
[24] Jun B and Subramanian S 2003 IEEE Trans. Nucl. Sci. 49 3222
[25] Polyakov A Y, Smirnov N B, Shchemerov I V, Vasilev A A, Yakimov E B, Chernykh A V, Kochkova A I, Lagov P B, Pavlov Y S, Kukharchuk O F, Suvorov A A, Garanin N S, Lee I H, Xian M, Ren F and Pearton S J 2020 J. Phys. D: Appl. Phys. 53 274001
[26] Yang J, Ren F, Pearton S, Yang G, Kim J and Kuramata A 2017 J. Vac. Sci. Technol. B 35 31208
[27] Yang J, Fares C, Guan Y, Ren F, Pearton S, Bae J, Kim J and Kuramata A 2018 J. Vac. Sci. Technol. B 36 31205
[28] Kumar V, Maan A and Akhtar J 2018 Phys. Status Solidi A 215 1700555
[29] Ma G, Zhang Y, Li H, Liu C, Qi C, Wei Y, Wang T, Dong S and Huo M 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA) Hangzhou, 2019 pp. 1-5
[30] Mikelsen M, Grossner U, Bleka J H, Monakhov E V, Svensson B G, Yakimova R, Henry A, Janzén E and Lebedev A A 2008 2008 Mater. Sci. Forum 600-603 425
[31] Omotoso E, Meyer W E, Auret F D, Diale M and Ngoepe P N M 2016 Physica B 480 196
[32] Yang J, Li H, Dong S and Li X 2019 IEEE Trans. Nucl. Sci. 66 2042
[33] Blanco M, Sahariah M, Jiang H, Costales A and Pandey R 2005 Phys. Rev. B 72 184103
[34] Miceli G and Pasquarello A 2015 Microelectron. Eng. 147 51
[35] Gao F and Weber W J 2002 Nucl. Instrum. Methods B 191 504
[36] Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun Y M and Ma X H 2018 Nucl. Instrum. Methods B 430 59
[37] Toulemonde M, Bouffard S and Studer F 1994 Nucl. Instrum. Methods B 91 108
[38] Rymzhanov R A, Medvedev N, O'Connell J H, Janse van Vuuren A, Skuratov V A and Volkov A E 2019 Sci. Rep. 9 3837
[1] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[2] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[3] Irradiation effects of graphene and thin layer graphite induced by swift heavy ions
Zeng Jian (曾健), Liu Jie (刘杰), Zhang Sheng-Xia (张胜霞), Zhai Peng-Fei (翟鹏飞), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Guo Hang (郭航), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅). Chin. Phys. B, 2015, 24(8): 086103.
[4] Two waveguide layers in lithium niobate crystal formed by swift heavy Kr ion irradiation
Liu Tao (刘涛), Huang Qing (黄庆), Zhao Jin-Hua (赵金花), Kong Wei-Jin (孔伟金), Liu Peng (刘鹏), Zhang Lian (张连), Zhou Yu-Fan (周育范), Yu Xiao-Fei (于晓飞), Wang Lei (王磊), Wang Xue-Lin (王雪林). Chin. Phys. B, 2015, 24(5): 056102.
[5] Raman spectrum study of graphite irradiated by swift heavy ions
Zhai Peng-Fei (翟鹏飞), Liu Jie (刘杰), Zeng Jian (曾健), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Ewing Rodney Charles. Chin. Phys. B, 2014, 23(12): 126105.
No Suggested Reading articles found!