Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056302    DOI: 10.1088/1674-1056/accdca
DATA PAPER Prev   Next  

Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors

Yilin Zhang(张轶霖)1,†, Huimin Mu(穆慧敏)2,†, Yuxin Cai(蔡雨欣)1,†, Xiaoyu Wang(王啸宇)2, Kun Zhou(周琨)1, Fuyu Tian(田伏钰)1, Yuhao Fu(付钰豪)2,3,‡, and Lijun Zhang(张立军)1,3,§
1 State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
3 International Center of Computational Method and Software, Jilin University, Changchun 130012, China
Abstract  Open framework structures (e.g., ScF3, Sc2W3O12, etc.) exhibit significant potential for thermal expansion tailoring owing to their high atomic vibrational degrees of freedom and diverse connectivity between polyhedral units, displaying positive/negative thermal expansion (PTE/NTE) coefficients at a certain temperature. Despite the proposal of several physical mechanisms to explain the origin of NTE, an accurate mapping relationship between the structural-compositional properties and thermal expansion behavior is still lacking. This deficiency impedes the rapid evaluation of thermal expansion properties and hinders the design and development of such materials. We developed an algorithm for identifying and characterizing the connection patterns of structural units in open-framework structures and constructed a descriptor set for the thermal expansion properties of this system, which is composed of connectivity and elemental information. Our developed descriptor, aided by machine learning (ML) algorithms, can effectively learn the thermal expansion behavior in small sample datasets collected from literature-reported experimental data (246 samples). The trained model can accurately distinguish the thermal expansion behavior (PTE/NTE), achieving an accuracy of 92%. Additionally, our model predicted six new thermodynamically stable NTE materials, which were validated through first-principles calculations. Our results demonstrate that developing effective descriptors closely related to thermal expansion properties enables ML models to make accurate predictions even on small sample datasets, providing a new perspective for understanding the relationship between connectivity and thermal expansion properties in the open framework structure. The datasets that were used to support these results are available on Science Data Bank, accessible via the link https://doi.org/10.57760/sciencedb.j00113.00100.
Keywords:  first-principles calculations      machine learning      negative thermal expansion      Grüneisen parameter  
Received:  15 April 2023      Revised:  17 April 2023      Accepted manuscript online:  18 April 2023
PACS:  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004131, 22090044, 62125402, and 92061113). Calculations were performed in part at the high-performance computing center of Jilin University.
Corresponding Authors:  Yuhao Fu, Lijun Zhang     E-mail:  fuyuhaoy@gmail.com;lijun_zhang@jlu.edu.cn

Cite this article: 

Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军) Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors 2023 Chin. Phys. B 32 056302

[1] Moore A L and Shi L 2014 Mater. Today 17 163
[2] Takeuchi Y, Sakamoto M and Sata T 1982 Precis. Eng. 4 19
[3] Moore A L and Shi L 2014 Mater. Today 17 163
[4] Cai Y, Faizan M, Mu H, Zhang Y, Zou H, Zhao H J, Fu Y and Zhang L 2023 Front. Phys. 18 43303
[5] Cen D, Wang B, Chu R, Gong Y, Xu G, Chen F and Xu F 2020 Scripta Mater 186 331
[6] Ding L, Wang C, Na Y, Chu L and Yan J 2011 Scripta Mater. 65 687
[7] Takenaka K, Hamada T, Kasugai D and Sugimoto N 2012 J. Appl. Phys. 112 083517
[8] Takenaka K and Ichigo M 2014 Compos. Sci. Technol. 104 47
[9] Yan X, Miao J, Liu J, Wu X, Zou H, Sha D, Ren J, Dai Y, Wang J and Cheng X 2016 J. Alloys Compd. 677 52
[10] Takenaka K 2012 Sci. Technol. Adv. Mat. 13 013001
[11] Dove M T and Fang H 2016 Rep. Prog. Phys. 79 066503
[12] Attfield J P 2018 Front. Chem. 6 371
[13] Coates C S and Goodwin A L 2019 Mater. Horizons 6 211
[14] Takenaka K 2018 Front. Chem. 6 267
[15] Lalpoor M, Eskin D G and Katgerman L 2011 Int. J. Mater. Res. 102 1286
[16] Mittal R, Gupta M K and Chaplot S L 2018 Prog. Mater. Sci. 92 360
[17] Ji T, He S, Ai F, Wu J, Yan L, Hu J and Liao M 2021 Nano Res. 14 3423
[18] Li C W, Tang X, Muñoz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
[19] Liu Y, Wang Z, Wu M, Sun Q, Chao M and Jia Y 2015 Comp. Mater. Sci. 107 157
[20] Huu H T, Viswanath N S M, Vu N H, Lee J W and Im W B 2021 Nano Res. 14 3977
[21] Wang L, Yuan P F, Wang F, Sun Q, Liang E J, Jia Y and Guo Z X 2014 Phys. Lett. A 378 2906
[22] Wu J, Li Q, Shuck C E, Maleski K, Alshareef H N, Zhou J, Gogotsi Y and Huang L 2022 Nano Res. 15 535
[23] Grima J N, Bajada M, Scerri S, Attard D, Dudek K K and Gatt R 2015 Proc. Royal Soc. Math. Phys. Eng. Sci. 471 20150188
[24] Vila F D, Hayashi S T and Rehr J J 2018 Front. Chem. 6 296
[25] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[26] Wang H, Yang M, Chao M, Guo J, Gao Q, Jiao Y, Tang X and Liang E 2019 Solid State Ionics 343 115086
[27] Ernst G, Broholm C, Kowach G R and Ramirez A P 1998 Nature 396 147
[28] Suzuki I, Seya K, Takei H and Sumino Y 1981 Phys. Chem. Minerals 7 60
[29] Zhao Y, Weidner D J, Parise J B and Cox D E 1993 Phys. Earth Planet. In. 76 1
[30] Mu H, Zhang Y, Zou H, Tian F, Fu Y and Zhang L 2023 J. Phys. Chem. Lett. 14 190
[31] Gao Q, Wang J, Sanson A, Sun Q, Liang E, Xing X and Chen J 2020 J. Am. Chem. Soc. 142 6935
[32] Zhang Y, Mu H, Xing B, Zou H, Fu Y and Zhang L 2022 Phys. Rev. Mater. 6 083603
[33] Peng J, Gunda N S H, Bridges C A, Lee S, Haynes J A and Shin D 2022 Comp. Mater. Sci. 210 111034
[34] Liaw A and Wiener M 2002 R news 2 18
[35] Friedman J H 2001 Ann. Statistics 29 1189
[36] Cortes C and Vapnik V 1995 Mach. Learn. 20 273
[37] Zhao R, Xing B, Mu H, Fu Y and Zhang L 2022 Chin. Phys. B 31 056302
[38] Freedman D A 2009 Statistical models: theory and practice (Cambridge University)
[39] Quinlan J R 1986 Mach. Learn. 1 81
[40] Kresse G 1995 J. Non-cryst. Solids 192 222
[41] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[46] Zhao X G, Zhou K, Xing B, Zhao R, Luo S, Li T, Sun Y, Na G, Xie J, Yang X, Wang X, Wang X, He X, Lv J, Fu Y and Zhang L 2021 Sci. Bull. 66 1973
[47] Zhao G, Xie J, Zhou K, Xing B, Wang X, Tian F, He X and Zhang L 2022 Chin. Phys. B 31 037104
[48] Altman N S 1992 The American Statistician 46 175
[49] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[50] Sebastian L, Sumithra S, Manjanna J, Umarji A M and Gopalakrishnan J 2003 Mater. Sci. Eng. B 103 289
[51] Sanson A, Rocca F, Dalba G, Fornasini P, Grisenti R, Dapiaggi M and Artioli G 2006 Phys. Rev. B 73 214305
[52] Gupta M K, Mittal R, Chaplot S L and Rols S 2014 J. Appl. Phys. 115 093507
[1] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[2] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[3] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[4] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[5] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[6] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[7] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[8] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[11] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[12] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[13] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
No Suggested Reading articles found!