Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization |
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔)† |
School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract Anderson localization of phonons is a kind of phonon wave effect, which has been proved to occur in many structures with disorders. In this work, we introduced aperiodicity to boron nitride/carbon nanotube superlattices (BN/C NT SLs), and used molecular dynamics to calculate the thermal conductivity and the phonon transmission spectrum of the models. The existence of phonon Anderson localization was proved in this quasi one-dimensional structure by analyzing the phonon transmission spectra. Moreover, we introduced interfacial mixing to the aperiodic BN/C NT SLs and found that the coexistence of the two disorder entities (aperiodicity and interfacial mixing) can further decrease the thermal conductivity. In addition, we also showed that anharmonicity can destroy phonon localization at high temperatures. This work provides a reference for designing thermoelectric materials with low thermal conductivity by taking advantage of phonon localization.
|
Received: 31 December 2022
Revised: 05 February 2023
Accepted manuscript online: 08 February 2023
|
PACS:
|
63.20.Pw
|
(Localized modes)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
63.22.Gh
|
(Nanotubes and nanowires)
|
|
44.10.+i
|
(Heat conduction)
|
|
Corresponding Authors:
Yuxiang Ni
E-mail: yuxiang.ni@swjtu.edu.cn
|
Cite this article:
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔) Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization 2023 Chin. Phys. B 32 056301
|
[1] Tritt T M, Böttner H and Chen L D 2008 MRS Bull. 33 366 [2] Chu S and Majumdar A 2012 Nature 488 294 [3] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109 [4] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 [5] Li J, Chen Z W, Zhang X Y, Yu H L, Wu Z H, Xie H Q, Chen Y and Pei Y Z 2017 Adv. Sci. 4 1700341 [6] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y and Pei Y 2017 Adv. Mater. 29 1605887 [7] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [8] Due J and Robinson A J 2013 Appl. Therm. Eng. 50 455 [9] Liu W H, Liu Q J, Zhong M, Gan Y D, Liu F S, Li X H and Tang B 2022 Acta Mater. 236 118137 [10] Huang X Y, Huang J, Cao Z Q, Wang H Y, Zhang X, Xu Y H and Ni Y X 2022 J. Nucl. Mater. 570 153981 [11] Zhang D B, Wang K, Chen S, Zhang L F, Ni Y X and Zhang G 2023 Nanoscale 15 1180 [12] Zhou Y G, Xiong S Y, Zhang X L, Volz S and Hu M 2018 Nat. Commun. 9 4712 [13] Wang H Y, Cheng Y J, Nomura M, Volz S, Donadio D, Zhang X H and Xiong S Y 2021 Phys. Rev. B 103 085414 [14] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631 [15] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043 [16] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597 [17] Chen Z, Zhang X and Pei Y 2018 Adv. Mater. 30 1705617 [18] Ma D, Arora A, Deng S, Xie G, Shiomi J and Yang N 2019 Mater. Today Phys. 8 56 [19] Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307 [20] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66 [21] Ni Y X, Xiong S Y, Volz S and Dumitric T 2014 Phys. Rev. Lett. 113 124301 [22] Xiong S Y, Ma J, Volz S and Dumitricš T 2014 Small 10 1756 [23] Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G and Ren Z 2008 Nano Lett. 8 4670 [24] Honarvar H and Hussein M I 2016 Phys. Rev. B 93 081412 [25] Xiong S Y, Sääskilahti K, Kosevich Y A, Han H X, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503 [26] Li K Q, Cheng Y J, Wang H Y, Guo Y Y, Zhang Z W, Bescond M, Nomura M, Volz S, Zhang X H and Xiong S Y 2022 Int. J. Heat Mass Transf. 183 122144 [27] Liao B L and Chen G 2015 MRS Bull. 40 746 [28] Jiang P F, Ouyang Y L, Ren W J, Yu C Q, He J and Chen J 2021 APL Mater. 9 040703 [29] Ni Y X and Volz S 2021 J. Appl. Phys. 130 190901 [30] Anderson P W 1958 Phys. Rev. 109 1492 [31] Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A and Chen G 2018 Sci. Adv. 4 eaat9460 [32] Ma D K, Ding H R, Meng H, Feng L, Wu Y, Shiomi J and Yang N 2016 Phys. Rev. B 94 165434 [33] Yang L, Yang N and Li B 2014 Nano Lett. 14 1734 [34] Ni Y X, Zhang H G, Hu S, Wang H Y, Volz S and Xiong S Y 2019 Int. J. Heat Mass Transf. 144 118608 [35] Hu R J and Tian Z T 2021 Phys. Rev. B 103 045304 [36] Guo Y Y, Bescond M, Zhang Z W, Xiong S Y, Hirakawa K, Nomura M and Volz S 2021 APL Mater. 9 091104 [37] Ma T F, Lin C T and Wang Y 2020 2D Mater. 7 035029 [38] Zhang H G, Xiong S Y, Wang H Y, Volz S and Ni Y X 2019 Europhys. Lett. 125 46001 [39] Lee H R, Furukawa N, Ricco A J, Pop E, Cui Y and Nishi Y 2021 Appl. Phys. Lett. 118 173901 [40] Dresselhaus M S and Eklund P C 2000 Adv. Phys. 49 705 [41] Bai D 2011 Fuller. Nanotub. Carbon Nanostructures 19 271 [42] Chen J, Xu X F, Zhou J and Li B W 2022 Rev. Mod. Phys. 94 025002 [43] Plimpton S 1995 J. Comput. Phys. 117 1 [44] Kubo R, Toda M and Hashitsume N 1985 Statistical Physics II (Heidelberg: Springer Berlin) pp. 203-263 [45] Tersoff J 1989 Phys. Rev. B 39 5566 [46] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2014 Phys. Rev. B 90 134312 [47] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426 [48] Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D and Ala-Nissila T 2019 J. Chem. Phys. 151 234105 [49] Nagelkerke N J D 1991 Biometrika 78 691 [50] Liu Y and He D H 2017 Phys. Rev. E 96 062119 [51] Wang Y, Huang H X and Ruan X L 2014 Phys. Rev. B 90 165406 [52] Yu C Q, Ouyang Y L and Chen J 2022 Front. Phys. 17 53507 [53] Mao J, Wang Y M, Liu Z H, Ge B H and Ren Z F 2017 Nano Energy 32 174 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|