Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056301    DOI: 10.1088/1674-1056/acb9e7
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization

Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔)
School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract  Anderson localization of phonons is a kind of phonon wave effect, which has been proved to occur in many structures with disorders. In this work, we introduced aperiodicity to boron nitride/carbon nanotube superlattices (BN/C NT SLs), and used molecular dynamics to calculate the thermal conductivity and the phonon transmission spectrum of the models. The existence of phonon Anderson localization was proved in this quasi one-dimensional structure by analyzing the phonon transmission spectra. Moreover, we introduced interfacial mixing to the aperiodic BN/C NT SLs and found that the coexistence of the two disorder entities (aperiodicity and interfacial mixing) can further decrease the thermal conductivity. In addition, we also showed that anharmonicity can destroy phonon localization at high temperatures. This work provides a reference for designing thermoelectric materials with low thermal conductivity by taking advantage of phonon localization.
Keywords:  Anderson localization      phonons      nanotube superlattices      thermal conductivity  
Received:  31 December 2022      Revised:  05 February 2023      Accepted manuscript online:  08 February 2023
PACS:  63.20.Pw (Localized modes)  
  63.20.-e (Phonons in crystal lattices)  
  63.22.Gh (Nanotubes and nanowires)  
  44.10.+i (Heat conduction)  
Corresponding Authors:  Yuxiang Ni     E-mail:  yuxiang.ni@swjtu.edu.cn

Cite this article: 

Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔) Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization 2023 Chin. Phys. B 32 056301

[1] Tritt T M, Böttner H and Chen L D 2008 MRS Bull. 33 366
[2] Chu S and Majumdar A 2012 Nature 488 294
[3] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109
[4] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[5] Li J, Chen Z W, Zhang X Y, Yu H L, Wu Z H, Xie H Q, Chen Y and Pei Y Z 2017 Adv. Sci. 4 1700341
[6] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y and Pei Y 2017 Adv. Mater. 29 1605887
[7] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[8] Due J and Robinson A J 2013 Appl. Therm. Eng. 50 455
[9] Liu W H, Liu Q J, Zhong M, Gan Y D, Liu F S, Li X H and Tang B 2022 Acta Mater. 236 118137
[10] Huang X Y, Huang J, Cao Z Q, Wang H Y, Zhang X, Xu Y H and Ni Y X 2022 J. Nucl. Mater. 570 153981
[11] Zhang D B, Wang K, Chen S, Zhang L F, Ni Y X and Zhang G 2023 Nanoscale 15 1180
[12] Zhou Y G, Xiong S Y, Zhang X L, Volz S and Hu M 2018 Nat. Commun. 9 4712
[13] Wang H Y, Cheng Y J, Nomura M, Volz S, Donadio D, Zhang X H and Xiong S Y 2021 Phys. Rev. B 103 085414
[14] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[15] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[16] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[17] Chen Z, Zhang X and Pei Y 2018 Adv. Mater. 30 1705617
[18] Ma D, Arora A, Deng S, Xie G, Shiomi J and Yang N 2019 Mater. Today Phys. 8 56
[19] Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307
[20] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66
[21] Ni Y X, Xiong S Y, Volz S and Dumitric T 2014 Phys. Rev. Lett. 113 124301
[22] Xiong S Y, Ma J, Volz S and Dumitricš T 2014 Small 10 1756
[23] Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G and Ren Z 2008 Nano Lett. 8 4670
[24] Honarvar H and Hussein M I 2016 Phys. Rev. B 93 081412
[25] Xiong S Y, Sääskilahti K, Kosevich Y A, Han H X, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503
[26] Li K Q, Cheng Y J, Wang H Y, Guo Y Y, Zhang Z W, Bescond M, Nomura M, Volz S, Zhang X H and Xiong S Y 2022 Int. J. Heat Mass Transf. 183 122144
[27] Liao B L and Chen G 2015 MRS Bull. 40 746
[28] Jiang P F, Ouyang Y L, Ren W J, Yu C Q, He J and Chen J 2021 APL Mater. 9 040703
[29] Ni Y X and Volz S 2021 J. Appl. Phys. 130 190901
[30] Anderson P W 1958 Phys. Rev. 109 1492
[31] Luckyanova M N, Mendoza J, Lu H, Song B, Huang S, Zhou J, Li M, Dong Y, Zhou H, Garlow J, Wu L, Kirby B J, Grutter A J, Puretzky A A, Zhu Y, Dresselhaus M S, Gossard A and Chen G 2018 Sci. Adv. 4 eaat9460
[32] Ma D K, Ding H R, Meng H, Feng L, Wu Y, Shiomi J and Yang N 2016 Phys. Rev. B 94 165434
[33] Yang L, Yang N and Li B 2014 Nano Lett. 14 1734
[34] Ni Y X, Zhang H G, Hu S, Wang H Y, Volz S and Xiong S Y 2019 Int. J. Heat Mass Transf. 144 118608
[35] Hu R J and Tian Z T 2021 Phys. Rev. B 103 045304
[36] Guo Y Y, Bescond M, Zhang Z W, Xiong S Y, Hirakawa K, Nomura M and Volz S 2021 APL Mater. 9 091104
[37] Ma T F, Lin C T and Wang Y 2020 2D Mater. 7 035029
[38] Zhang H G, Xiong S Y, Wang H Y, Volz S and Ni Y X 2019 Europhys. Lett. 125 46001
[39] Lee H R, Furukawa N, Ricco A J, Pop E, Cui Y and Nishi Y 2021 Appl. Phys. Lett. 118 173901
[40] Dresselhaus M S and Eklund P C 2000 Adv. Phys. 49 705
[41] Bai D 2011 Fuller. Nanotub. Carbon Nanostructures 19 271
[42] Chen J, Xu X F, Zhou J and Li B W 2022 Rev. Mod. Phys. 94 025002
[43] Plimpton S 1995 J. Comput. Phys. 117 1
[44] Kubo R, Toda M and Hashitsume N 1985 Statistical Physics II (Heidelberg: Springer Berlin) pp. 203-263
[45] Tersoff J 1989 Phys. Rev. B 39 5566
[46] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2014 Phys. Rev. B 90 134312
[47] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426
[48] Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D and Ala-Nissila T 2019 J. Chem. Phys. 151 234105
[49] Nagelkerke N J D 1991 Biometrika 78 691
[50] Liu Y and He D H 2017 Phys. Rev. E 96 062119
[51] Wang Y, Huang H X and Ruan X L 2014 Phys. Rev. B 90 165406
[52] Yu C Q, Ouyang Y L and Chen J 2022 Front. Phys. 17 53507
[53] Mao J, Wang Y M, Liu Z H, Ge B H and Ren Z F 2017 Nano Energy 32 174
[1] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for the multi-segment thermal rectifier
Fu-Ye Du (杜甫烨), Wang Zhang (张望), Hui-Qiong Wang (王惠琼), Jin-Cheng Zheng (郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[2] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[3] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[4] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[5] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[6] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[7] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[8] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[9] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[10] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[11] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[12] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[13] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[14] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[15] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
No Suggested Reading articles found!