Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋)†
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract We report a universal method to transfer freestanding La0.7Sr0.3MnO3 membranes to target substrates. The 4-unit-cell-thick freestanding La0.7Sr0.3MnO3 membrane exhibits the enhanced ferromagnetism, conductivity and out-of-plane magnetic anisotropy, which otherwise shows nonmagnetic/antiferromagnetic and insulating behavior due to the intrinsic epitaxial strain. This work facilitates the promising applications of ultrathin freestanding correlated oxide membranes in electronics and spintronics.
(Magnetic properties of thin films, surfaces, and interfaces)
Fund: This work was supported in part by the National Key R&D Program of China (Grant No. 2022YFA1402404) and the National Natural Science Foundation of China (Grant Nos. 62274085, 11874203, and 61822403).
Corresponding Authors:
Xuefeng Wang
E-mail: xfwang@nju.edu.cn
Cite this article:
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋) Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes 2023 Chin. Phys. B 32 107402
[1] Yao G, Kang L, Li J, Long Y, Wei H, Ferreira C A, Jeffery J J, Lin Y, Cai W B and Wang X D 2018 Nat. Commun.9 5349 [2] Long Y, Wei H, Li J, Yao G, Yu B, Ni D L, Gibson A L F, Lan X L, Jiang Y D, Cai W B and Wang X D 2018 ACS Nano12 12533 [3] Kim J, Son D, Lee M, Song C, Song J K, Koo J H, Lee D J, Shim H J, Kim J H, Lee M, Hyeon T and Kim D H 2016 Sci. Adv.2 e1501101 [4] Baek S H, Park J, Kim D M, Aksyuk V A, Das R R, Bu S D, Felker D A, Lettieri J, Vaithyanathan V, Bharadwaja S S N, Bassiri-Gharb N, Chen Y B, Sun H P, Folkman C M, Jang H W, Kreft D J, Streiffer S K, Ramesh R, Pan X Q, Trolier-McKinstry S, Schlom D G, Rzchowski M S, Blick R H and Eom C B 2011 Science334 958 [5] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater.11 103 [6] Mele P, Endo T, Arisawa S, Li C and Tsuchiya T 2015 Oxide Thin Films, Multilayers, and Nanocomposites (Berlin: Springer) p. 157 [7] Christensen D V, Trier F, Niu W, Gan Y L, Zhang Y, Jespersen T S, Chen Y Z and Pryds N 2019 Adv. Mater. Interfaces6 1900772 [8] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science317 1196 [9] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A and Bozovic I 2008 Nature455 782 [10] Chen Z, Liu Z R, Sun Y Q, Chen X X, Liu Y, Zhang H, Li H K, Zhang M, Hong S Y, Ren T S, Zhang C, Tian H, Zhou Y, Sun J R and Xie Y W 2021 Phys. Rev. Lett.126 026802 [11] Wu Y, Suzuki Y, Rüdiger U, Yu J, Kent A D, Nath T K and Eom C B 1999 Appl. Phys. Lett.75 2295 [12] Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H, Zhou Y L and Yang G Z 2005 Phys. Rev. B71 184428 [13] Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W and Zhang J D 2015 Phys. Rev. B92 125123 [14] Han K, Wu L, Cao Y, Wang H Y, Ye C, Huang K, Motapothula M, Xing H N, Li X H, Qi D C, Li X and Wang X R 2021 ACS Appl. Mater. Interfaces13 16688 [15] Jia C L and Berakdar J 2009 Appl. Phys. Lett.95 012105 [16] Vaz C A F, Hoffman J, Ahn C H and Ramesh R 2010 Adv. Mater.22 2900 [17] Vaz C A F 2012 J. Phys.: Condens. Matter24 333201 [18] Pesquera D, Khestanova E, Ghidini M, Zhang S, Rooney A P, Maccherozzi F, Riego P, Farokhipoor S, Kim J, Moya X, Vickers M E, Stelmashenko N A, Haigh S J, Dhesi S S and Mathur N D 2020 Nat. Commun.11 3190 [19] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y and Hwang H Y 2016 Nat. Mater.15 1255 [20] Baek D J, Lu D, Hikita Y, Hwang H Y and Kourkoutis L F 2017 ACS Appl. Mater. Interfaces9 54 [21] Ji D X, Cai S H, Paudel T R, Sun H Y, Zhang C C, Han L, Wei Y F, Zang Y P, Gu M, Zhang Y, Gao W P, Huyan H X, Guo W, Wu D, Gu Z B, Tsymbal E Y, Wang P, Nie Y F and Pan X Q 2019 Nature570 87 [22] Lu Q W, Liu Z W, Yang Q, Cao H, Balakrishnan P, Wang Q, Cheng L, Lu Y L, Zuo J M, Zhou H, Quarterman P, Muramoto S, Grutter A J, Chen H H and Zhai X F 2022 ACS Nano16 7580 [23] Zhang C, Ding S S, Qiao K M, Li J, Li Z, Yin Z, Sun J R, Wang J, Zhao T Y, Hu F X and Shen B G 2021 ACS Appl. Mater. Interfaces13 28442 [24] Chen Y D, Yuan X, Shan S Q, Zhang C, Liu R X, Zhang X, Zhuang W Z, Chen Y Q, Xu Y B, Zhang R and Wang X F 2022 ACS Appl. Mater. Interfaces14 39673 [25] Eom K, Yu M Q, Seo J, Yang D Y, Lee H, Lee J W, Irvin P, Oh S H, Levy J and Eom C B 2021 Sci. Adv.7 eabh1284 [26] Lu D, Crossley S, Xu R J, Hikita Y and Hwang H Y 2019 Nano Lett.19 3999 [27] Xu R J, Huang J W, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S and Hwang H Y 2020 Nat. Commun.11 3141 [28] Jin C, Zhu Y M, Li X W, An F, Han W Q, Liu Q, Hu S X, Ji Y J, Xu Z D, Hu S B, Ye M, Zhong G K, Gu M and Chen L 2021 Adv. Sci.8 2102178 [29] Hemberger J, Krimmel A, Kurz T, Von Nidda H A K, Ivanov V Y, Mukhin A A, Balbashov A M and Loidl A 2002 Phys. Rev. B66 094410 [30] Ramirez A P 1997 J. Phys.: Condens. Matter9 8171 [31] Lu Z X, Liu J W, Feng J T, Zheng X, Yang L H, Ge C, Jin K J, Wang Z M and Li R W 2020 APL Mater.8 051105 [32] Wang H, Shen L K Lu L, Zhang B, Ma C R, Cao C M, Jiang C J, Liu M and Jia C L 2019 IEEE Electron Dev. Lett.40 1856 [33] Zhou W K, Han W Q, Yang Y H, Shu L, Luo Q G, Ji Y J, Jin C, Zhang Y L, Song J H, Ye M, Liu Q, Hu S B and Chen L 2023 Appl. Phys. Lett.122 062901 [34] Niu W, Gao M, Wang X F, Song F Q, Du J, Wang X R, Xu Y B and Zhang R 2016 Sci. Rep.6 26081 [35] Chen L M, Zhang C C, Chen Y Q, Chen Y D, Niu W, Wang P, Du J, Xu Y B, Zhang R and Wang X F 2019 Appl. Phys. Lett.115 201604 [36] Baek D J, Lu D, Hikita Y, Hwang H Y and Kourkoutis L F 2017 APL Mater.5 096108 [37] Chen Y Q, Liu R X, Chen Y D, Yuan X, Ning J A, Zhang C C, Chen L M, Wang P, He L, Zhang R, Xu Y B and Wang X F 2021 Chin. Phys. Lett.38 017101 [38] Chen H Y, Yu Y, Wang Z, Bai Y, Lin H X, Li X L, Liu H, Miao T, Kou Y F, Zhang Y S, Li Y, Tang J, Wang Z C, Cai P, Zhu Y Y, Cheng Z H, Zhong X Y, Wang W B, Gao X Y, Yin L F, Wu R Q and Shen J 2019 Phys. Rev. B99 214419 [39] Porter S B, Venkatesan M, Dunne P, Doudin B, Rode K and Coey J M D 2017 IEEE Trans. Magn.53 6000904 [40] Wu Y J, Ning X K, Wang Z J, Wang Q and Zhang Z D 2016 J. Alloys Compd.667 317 [41] Matou T, Takeshima K, Anh L D, Seki M, Tabata H, Tanaka M and Ohya S 2017 Appl. Phys. Lett.110 212406 [42] Ji H H, Yan Z, Zhou G W, Kang P H, Li Z L and Xu X H 2022 J. Mater. Chem. C10 12844
Bending sensor based on flexible spin valve L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov. Chin. Phys. B, 2023, 32(5): 057502.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.