Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054202    DOI: 10.1088/1674-1056/aca7f1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites

Liang Qiao(乔亮)1,†, Cheng-Fa Tu(涂成发)1, Wei Wu(吴伟)1, Wen-Biao Wang(王文彪)1, Sheng-Yu Yang(杨晟宇)1, Sun Zhe(孙哲)1, Peng Wu(吴鹏)1, Jin-Bo Yang(杨金波)2, Chang-Sheng Wang(王常生)2, Tao Wang(王涛)1, and Fa-Shen Li(李发伸)1
1 Institute of Applied Magnetism, Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 School of Physics, Peking University, Beijing 100871, China
Abstract  Intermetallic complexes of rare-earth and 3d transition metals with core-shell structures are commonly employed as microwave absorbing materials due to their high saturation magnetizations and natural resonance in GHz. Hence, we synthesized Y2Co17 alloy via the co-precipitation reduction-diffusion technique, then coated the Y2Co17 magnetic powders with SiO2 to create Y2Co17@SiO2 core-shell structures. The formation of Y2Co17@SiO2/polyurethane (PU) at various volume fractions and their magnetic, electromagnetic properties were investigated using x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and vector network analyzer. The microwave absorption characteristics of Y2Co17@SiO2/PU were also investigated at various volume fractions. We not only investigate the zero-reflection conditions of the samples with different volume fractions, but also show that every absorber has a strong reflection loss value (RL ≤ -65.00 dB) and excellent microwave absorption properties with an average RL of Y2Co 17@SiO2/PU being below -10 dB at 8 GHz-18 GHz under different thicknesses, showing that the enhancement of microwave absorption performance arises from the balance between permeability and permittivity of absorber.
Keywords:  Y2Co17@SiO2      Co-precipitation reduction diffusion      microwave absorption      zero-reflection condition      reflection loss  
Received:  24 October 2022      Revised:  25 November 2022      Accepted manuscript online:  02 December 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  75.50.Bb (Fe and its alloys)  
  76.30.Kg (Rare-earth ions and impurities)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501302), the National Natural Science Foundation of China (Grant No. 51731001), and the Fund from the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization's Key Research and Development Projects.
Corresponding Authors:  Liang Qiao     E-mail:  qiaoliang@lzu.edu.cn

Cite this article: 

Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸) Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites 2023 Chin. Phys. B 32 054202

[1] Won H Y, Hong Y K, Choi M, Garcia H, Shin H, Yoon Y S, Lee K, Xin H and Yeo C D 2022 J. Magn. Magn. Mater. 560 169523
[2] Zhang X M, Liu Y, Liu Z Y, Wang Y Q, Wang Y and Kong L B 2022 J. Magn. Magn. Mater. 560 169647
[3] Wang X Y, Y. Liang, Wei S C, Wang Y J, Yuan Y, Li L W, Wang B and Xie H J 2022 J. Magn. Magn. Mater. 560 169450
[4] Wang Y Q, Wang H G, Ye J H, Shi L Y and Feng X 2020 J. Magn. Magn. Mater. 383 123096
[5] Zhang H Z, Jia Z R, Feng A L, Zhou Z H, Zhang C H, Wang K K, Liu N and Wu G L 2020 Compos. Commun. 19 42
[6] Gu X S, Tan G G, Chen S W, Man Q K, Chang C T, Wang X M, Li R W, Che S L and Jiang L Q 2017 J. Magn. Magn. Mater. 424 39
[7] He G H, Duan Y P and Pang H F 2020 Nano-Micro Lett. 12 57
[8] Song Y, Yin F X, Zhang C W, Guo W B, Han L Y and Yuan Y 2017 Nano-Micro Lett. 13 1
[9] Gao S T, Zhang Y C, Xing H L and Li H X 2020 Chem. Eng. J. 389 124149
[10] Guan B W, Ding D H, Wang L F, Wu J Y and Xiong R 2017 Mater. Res. Express 4 056103
[11] Wu Y P, Ong C K, Li Z W, Chen L F Lin G Q and Wang S J 2005 J. Appl. Phys. 97 063909
[12] Wang Y K, Liu Z, Zhang P Y, Cai K T, Yang W Y, Han J Z, Liu S Q, Wang C S, Zou R Q and Yang J B 2021 AIP Adv. 11 015237
[13] Wang G W, Li X L, Wang P, Zhang J M, Wang D, Qiao L, Wang T and Li F S 2018 J. Magn. Magn. Mater. 456 92
[14] Tereshina I S, Veselova S V, Verbetsky V N, Paukov M A, Gorbunov D L and Tereshina-Chitrova E A 2022 J. Alloys Compd. 897 163228
[15] Jaballah H, Bouzidi W, Fersi R, Mliki N and Bessais L 2022 J. Phys. Chem. Solids 161 110438
[16] Yang J B, Yang W Y, Li F S and Yang Y C 2020 J. Magn. Magn. Mater. 497 165961
[17] Han R, Yi H B, Zuo W L, Wang T, Qiao L and Li F S 2012 J. Magn. Magn. Mater. 324 2488
[18] Qiao G Y, Hu Q W, Zhang P Y, Yang W Y, Liu Z, Liu S Q, Wang C S and Yang J B 2020 J. Alloys Compd. 825 154179
[19] Gu X S, Tan G G, Chen S W, Man Q K, Chang C T, Wang X M, Li R W, Che S L and Jiang L Q 2017 J. Magn. Magn. Mater. 424 39
[20] Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B, Lei J P and Lee C G 2006 Appl. Phys. Lett. 89 053115
[21] Chen Y J, Gao P, Zhu C L, Wang R X, Wang L J, Cao M S and Fang X Y 2009 J. Appl. Phys. 106 054303
[22] Jazirehpour M and Seyyed Ebrahimi S A 2015 J. Alloys Compd. 639 280
[23] Li Z X, Ding X L, Li F, Liu X G, Zhang S H and Long H M 2017J. Phys. D: Appl. Phys. 50 445305
[24] Chao F, Liu X G, Sun Y P, Jin C J and Lv Y H 2014 RSC Adv. 4 22710
[25] Zhuang X H, Tan G G, Li F, Ning M Q, Qi C Y, Ge X J, Yang Z and Man Q 2021 J. Alloys Compd. 50 445305
[26] Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T and Li F S 2022 J. Magn. Magn. Mater. 883 160835
[27] Wang Y K, Lin Z C, Liu Z, Qiao G Y, Zhang P Y, Li K W, Yang W Y, Han J Z, Liu S Q, Wang C S, Qiao L and Yang J B 2022 IEEE Trans. Magn. 58 1
[28] He D L, Dou Z Y, Zhang J M, Wang P, Wang G W, Duan B F, Qiao L and Wang T 2020 J. Magn. Magn. Mater. 322 167191
[29] Kong I, Ahmad H A, Abdullah M H, Hui D, Yusoff A N and Puryanti D 2010 J. Magn. Magn. Mater. 513 3401
[30] Inui T, Konishi K and Oda K 1999 IEEE Trans. Magn. 35 3148
[31] Tu C F, Zheng Z Y, Qiao L, Hao H B, Ma Y G, Sun Z, Wang H, Wang T and Li F S 2020 Acta Phys. Sin. 71 184201 (in Chinese)
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[5] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[6] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[7] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[8] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[9] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[10] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[11] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[12] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[13] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(3): 037601.
[14] Low field microwave absorption and magnetization process in CoFeNi electroplated wires
H. Garcìa-Miquel and G.V. Kurlyandskaya. Chin. Phys. B, 2008, 17(4): 1430-1435.
[15] Investigation of photoelectron temporal characteristics in silver halide microcrystals using the microwave absorption technique
Yang Shao-Peng (杨少鹏), Fu Guang-Sheng (傅广生), Dai Xiu-Hong (代秀红), Dong Guo-Yi (董国义), Li Xiao-Wei (李晓苇), Han Li (韩理). Chin. Phys. B, 2004, 13(8): 1326-1329.
No Suggested Reading articles found!