CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
A first-principles study on remote van der Waals epitaxy through a graphene monolayer on semiconductor substrates |
Rui Hou(侯锐)1,2 and Shenyuan Yang(杨身园)1,2,† |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract To investigate the mechanism of remote epitaxy, where the overlayer can follow the same crystalline structure as the underlying semiconductor substrate through a thin two-dimensional interlayer, we systematically study the potential fluctuations of graphene covered Si, GaAs, and GaN substrates from first-principles. We find that the uneven semiconductor surface, the distorted graphene, and the non-uniform interface charge transfer make significant contributions to the potential fluctuation. The semiconductor substrate with different surface reconstructions and orientations will generate different potential fluctuations through the graphene interlayer. We also calculate and compare the adsorption of adatoms on graphene covered substrates. The adsorption energies of adatoms not only depend on their distances to the underlying semiconductor surface, but are also sensitive to the direction of the charge transfer at the graphene/substrate interface. Changing the semiconductor reconstruction or orientation could even reverse the order of the adsorption energies of cation and anion adatoms by reversing the interface charge transfer direction, leading to a change in the growth orientation of the overlayer. Our study improves the understanding of the mechanism of remote epitaxy, and reveals that it is possible to control the initial nucleation and orientation of overlayers by changing the semiconductor reconstructions and/or orientations in remote epitaxy.
|
Received: 15 August 2022
Revised: 15 August 2022
Accepted manuscript online: 19 September 2022
|
PACS:
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202) and the National Natural Science Foundation of China (Grant No. 12074369). |
Corresponding Authors:
Shenyuan Yang
E-mail: syyang@semi.ac.cn
|
Cite this article:
Rui Hou(侯锐) and Shenyuan Yang(杨身园) A first-principles study on remote van der Waals epitaxy through a graphene monolayer on semiconductor substrates 2023 Chin. Phys. B 32 066801
|
[1] Chung K, Lee C H and Yi G C2010 Science 330 655 [2] Hong Y J, Lee C H, Yoon A, Kim M, Seong H K, Chung H J, Sone C, Park Y J and Yi G C2011 Adv. Mater. 23 3284 [3] Yang J, Yan D and Jones T S2015 Chem. Rev. 115 5570 [4] Wang C H, Cheng K Y, Yang S J and Hwang F C1985 J. Appl. Phys. 58 757 [5] Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A and Jones K A1998 Appl. Phys. Lett. 73 348 [6] Currie M T, Samavedam S B, Langdo T A, Leitz C W and Fitzgerald E A1998 Appl. Phys. Lett. 72 1718 [7] Luan H C, Lim D R, Lee K K, Chen K M, Sandland J G, Wada K and Kimerling L C1999 Appl. Phys. Lett. 75 2909 [8] Andre C L, Wilt D M, Pitera A J, Lee M L, Fitzgerald E A and Ringel S A2005 J. Appl. Phys. 98 014502 [9] Daruka I and Barabási A L1997 Phys. Rev. Lett. 79 3708 [10] Massies J and Grandjean N1993 Phys. Rev. Lett. 71 1411 [11] Song T L, Chua S J, Fitzgerald E A, Chen P and Tripathy S2003 Appl. Phys. Lett. 83 1545 [12] Camarero J, Ferrón J, Cros V, Gómez L, Vázquez de Parga A L, Gallego J M, Prieto J E, de Miguel J J and Miranda R1998 Phys. Rev. Lett. 81 850 [13] Utama M I B, Zhang Q, Zhang J, Yuan Y, Belarre F J, Arbiol J and Xiong Q2013 Nanoscale 5 3570 [14] Alaskar Y, Arafin S, Wickramaratne D, Zurbuchen M A, He L, McKay J, Lin Q, Goorsky M S, Lake R K and Wang K L2014 Adv. Funct. Mater. 24 6629 [15] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W and Sadana D K2014 Nat. Commun. 5 4836 [16] Dang W, Peng H, Li H, Wang P and Liu Z2010 Nano Lett. 10 2870 [17] Liu Y, Weinert M and Li L2012 Phys. Rev. Lett. 108 115501 [18] Gehring P, Gao B F, Burghard M and Kern K2012 Nano Lett. 12 5137 [19] Munshi A M, Dheeraj D L, Fauske V T, Kim D C, van Helvoort A T J, Fimland B O and Weman H2012 Nano Lett. 12 4570 [20] Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J and Kim J2017 Nature 544 340 [21] Kong W, Li H, Qiao K, et al.2018 Nat. Mater. 17 999 [22] Badokas K, Kadys A, Mickevičius J, Ignatjev I, Skapas M, Stanionytė S, Radiunas E, Juška G and Malinauskas T2021 J. Phys. D 54 205103 [23] Jeong J, Wang Q, Cha J, Jin D K, Shin D H, Kwon S, Kang B K, Jang J H, Yang W S, Choi Y S, Yoo J, Kim J K, Lee C H, Lee S, Zakhidov A A, Hong S, Kim M J and Hong Y J2020 Sci. Adv. 6 eaaz5180 [24] Journot T, Okuno H, Mollard N, Michon A, Dagher R, Gergaud P, Dijon J, Kolobov A V and Hyot B2019 Nanotechnology 30 505603 [25] Chang H, Chen Z, Li W, Yan J, Hou R, Yang S, Liu Z, Yuan G, Wang J, Li J, Gao P and Wei T2019 Appl. Phys. Lett. 114 091107 [26] Chen Z, Liu Z, Wei T, Yang S, Dou Z, Wang Y, Ci H, Chang H, Qi Y, Yan J, Wang J, Zhang Y, Gao P, Li J and Liu Z2019 Adv. Mater. 31 1807345 [27] Jeong J, Min K A, Shin D H, Yang W S, Yoo J, Lee S W, Hong S and Hong Y J2018 Nanoscale 10 22970 [28] Jeong J, Min K A, Kang B K, Shin D H, Yoo J, Yang W S, Lee S W, Hong S and Hong Y J2018 Appl. Phys. Lett. 113 233103 [29] Jeong J, Jin D K, Cha J, Kang B K, Wang Q, Choi J, Lee S W, Mikhailovskii V Y, Neplokh V, Amador-Mendez N, Tchernycheva M, Yang W S, Yoo J, Kim M J, Hong S and Hong Y J2020 ACS Appl. Nano Mater. 3 8920 [30] Jiang J, Sun X, Chen X, et al.2019 Nat. Commun. 10 4145 [31] Wang D, Lu Y, Meng J, Zhang X, Yin Z, Gao M, Wang Y, Cheng L, You J and Zhang J2019 Nanoscale 11 9310 [32] Jia R, Kum H S, Sun X, Guo Y, Wang B, Fang P, Jiang J, Gall D, Lu T M, Washington M, Kim J and Shi J2021 J. Vac. Sci. Technol. A 39 040405 [33] Guo Y, Sun X, Jiang J, Wang B, Chen X, Yin X, Qi W, Gao L, Zhang L, Lu Z, Jia R, Pendse S, Hu Y, Chen Z, Wertz E, Gall D, Feng J, Lu T M and Shi J2020 Nano Lett. 20 33 [34] Yoo D, Lee K, Tchoe Y, Guha P, Ali A, Saroj R K, Lee S, Islam A B M H, Kim M and Yi G C2021 Sci. Rep. 11 17524 [35] Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H and Yi G C2011 Adv. Mater. 23 4614 [36] Kresse G and Furthmuller J1996 Phys. Rev. B 54 11169 [37] Blöchl P E1994 Phys. Rev. B 50 17953 [38] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865 [39] Monkhorst H J and Pack J D1976 Phys. Rev. B 13 5188 [40] Grimme S, Antony J, Ehrlich S and Krieg H2010 J. Chem. Phys. 132 154104 [41] Niu M, Li D, Sheng B, Shao X, Liu W and Wang Z2011 2011 IEEE International Conference on Mechatronics and Automation, August 7-10, 2011 Beijing, China, p. 1423 [42] Kim Y S, Marsman M, Kresse G, Tran F and Blaha P2010 Phys. Rev. B 82 205212 [43] Zhang Z, Qian Q, Li B and Chen K J2018 ACS Appl. Mater. Interfaces 10 17419 [44] Leszczynski M, Teisseyre H, Suski T, Grzegory I, Bockowski M, Jun J, Porowski S, Pakula K, Baranowski J M, Foxon C T and Cheng T S1996 Appl. Phys. Lett. 69 73 [45] Pavlova T V, Zhidomirov G M and Eltsov K N2018 J. Phys. Chem. C 122 1741 [46] Henkelman G, Arnaldsson A and Jónsson H2006 Comput. Mater. Sci. 36 354 [47] Ohtake A2008 Surf. Sci. Rep. 63 295 [48] Schmidt W G and Bechstedt F1996 Surf. Sci. 360 L473 [49] Smith A R, Feenstra R M, Greve D W, Neugebauer J and Northrup J E1997 Phys. Rev. Lett. 79 3934 [50] Smith A R, Feenstra R M, Greve D W, Shin M S, Skowronski M, Neugebauer J and Northrup J E1998 J. Vac. Sci. Technol. B 16 2242 [51] Pashley D W1999 Mater. Sci. Technol. 15 2 [52] Chan K T, Neaton J B and Cohen M L2008 Phys. Rev. B 77 235430 [53] Rani B and Dharamvir K2014 Int J Quantum Chem 114 1619 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|