1 College of New Energy, Xi'an Shiyou University, Xi'an 710065, China; 2 Fundamental Science on Aircraft Structural Mechanics and Strength Laboratory, Northwestern Polytechnical University, Xi'an 710072, China; 3 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; 4 College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Abstract Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials, but the underlying deformation mechanism is still under the way of exploring. Here, the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates (DPNLs) with different layer thicknesses are investigated using molecular dynamics simulations. The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible, while it affects the plastic deformation mechanism of amorphous layers distinctly. The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs, which is inversely proportional to the layer thickness. It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat. Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces. Furthermore, the main plastic deformation mechanism in crystalline part: grain reorientation, transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti, has also been displayed in the present work. The results may provide a guideline for design of high-performance Ti and its alloy.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51902254 and 12072286), and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2021JZ-53 and 2018JQ5108), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 20JK0845).
Corresponding Authors:
Qiong Deng, Haiyang Song
E-mail: dengqiong24@nwpu.edu.cn;hysong@xsyu.edu.cn
[1] Peters M and Leyens C 2003 Titanium and Titanium Alloys: Fundamentals and Applications (New York: John Wiley & Sons) pp. 1-35[2] Zheng G M, Tang B, Zhao S K, Wang W Y, Chen X F, Zhu L and Li J S 2022 Acta Mater.225 117585 [3] Yuan Z W, Han Y T, Zang S L, Chen J, He G Y, Chai Y, Yang Z F and Fu Q 2021 Ceram. Int.47 10796 [4] Wang W J, Ji Y C, Fang M X, Wang D, Ren S, Otsuka K, Wang Y Z and Ren X B 2022 Acta Mater.226 117618 [5] Lu K 2016 Nat. Rev. Mater.1 16019 [6] Sun L G, Wu G, Wang Q and Lu J 2020 Mater. Today38 114 [7] Hou Z Q, Zhang J Y, Zhang P, Wu K, Li J, Wang Y Q, Liu G, Zhang G J and Sun J 2020 Appl. Surf. Sci.502 144118 [8] Wu S H, Hou Z Q, Zhang J Y, Wang Y Q, Wu K, Liu G and Sun J 2019 Scr. Mater.172 61 [9] Zhang Y F, Xue S, Li Q, Li J, Ding J, Niu T J, Su R, Wang H and Zhang X 2019 Acta Mater.175 466 [10] Liu Y, Chen Y, Yu K Y, Wang H, Chen J and Zhang X 2013 Int. J. Plast.49 152 [11] Misra A and Krug H 2001 Adv. Eng. Mater.3 217 [12] Zhang Y F, Li Q, Gong M, Xue S, Ding J, Li J, Cho J, Niu T, Su R Z, Richter N A, Wang H, Wang J and Zhang X 2020 Appl. Surf. Sci.527 146776 [13] Zhang Y F, Su R, Niu T J, Richter N A, Xue S, Li Q, Ding J, Yang B, Wang H and Zhang X 2020 Scr. Mater.186 219 [14] Cao Z H, Sun W, Ma Y J, Li Q, Fan Z, Cai Y P, Zhang Z J, Wang H, Zhang X and Meng X K 2020 Acta Mater.195 240 [15] Wang Y M, Li J, Hamza A V and Barbee T W2007 Proc. Natl. Acad. Sci. USA104 11155 [16] Doan D Q, Fang T H, Tran A S and Chen T H 2020 J. Phys. Chem. Solids138 109291 [17] Song H Y, Zhang K, An M R, Wang L, Xiao M X and Li Y L 2019 J. Non-Cryst. Solids521 119550 [18] Zhang K, Song H Y, Deng Q and Li Y L 2020 J. Non-Cryst. Solids534 119954 [19] Wang Y Q, Liang X Q, Wu K, Zhang J Y, Liu G and Sun J 2018 Mater. Sci. Eng. A732 29 [20] Wang Y Q, Kiener D, Liang X Q, Bian J J, Wu K, Zhang J Y, Liu G and Sun J 2018 J. Alloys Compd.768 88 [21] Wang Y Q, Fritz R, Kiener D, Zhag J Y, Liu G, Kolednik O, Pippan R and Sun J 2019 Acta Mater.180 73 [22] Wang Y Q, Zhang J Y, Liang X Q, Wu K, Liu G and Sun J 2015 Acta Mater.95 132 [23] Zhang J Y, Wang Y Q, Liang X Q, Zeng F L, Liu G and Sun J 2015 Acta Mater.92 140 [24] Liang X Q, Zhang J Y, Wang Y Q, Wu S H, Zeng F, Wu K, Liu G, Zhang G J and Sun J 2016 Mater. Sci. Eng. A672 153 [25] Spindler M, Menzel S B, Eggs C, Thomas J, Gemming T and Eckert J 2008 Microelectron. Eng.85 2055 [26] Campo K N, Freitas C C D, Lima D D D and Caram R 2020 J. Mater. Res. Technol.9 15802 [27] Stranak V, Wulff H, Rebl H, Zietz C, Arndt K, Bogdanowicz R, Nebe B, Bader R, Podbielski A, Hubicka Z and Hippler R 2011 Mater. Sci. Eng. C31 1512 [28] Turnow H, Wendrock H, Menzel S, Gemming T and Eckert J 2016 Thin Solid Films598 184 [29] Hong S H, Kim J T, Park H J, Kim Y S, Suh J Y, Na Y S, Lim K R, Park J M and Kim K B 2016 Intermetallics75 1 [30] Kim Y S, Hong S H, Park H J, Kim J T, Jeong H J, Na Y S, Lim K R, Park J M and Kim K B 2017 J. Alloys Compd.707 87 [31] Chen J, Zhang Z, Yang G, Fang Z, Yang Z, Li Z and He G 2020 Appl. Surf. Sci.513 145457 [32] Doan D Q, Fang T H and Chen T H 2020 Tribol. Int.147 106275 [33] Doan D Q, Fang T H and Chen T H 2021 Sci. Rep.11 1 [34] Lu Y Y, Kotoka R, Ligda J P, Cao B B, Yarmolenko S N, Schuster B E and Wei Q 2014 Acta Mater.63 216 [35] Su M J, Deng Q, Liu L T, Chen L Y, Su M L and An M R 2021 Chin. Phys. B30 096201 [36] Wei N, Shi A Q, Li Z H, Ou B X, Zhao S H and Zhao J H 2022 Chin. Phys. B31 066203 [37] Tian Y Y, Luo G J, Fang Q H, Li J and Peng J 2022 Chin. Phys. B31 066204 [38] Gu B K, Shen S N and Li H 2022 Chin. Phys. B31 016101 [39] Tran A S and Fang T H 2021 Physica E126 114470 [40] Song H Y, Xu J J, Zhang Y G, Li S, Wang D H and Li Y L 2017 Mater. Des.127 173 [41] Song H Y, An M R, Li Y L and Deng Q 2014 J. Appl. Phys.116 214305 [42] Song H Y, Yin P, Zuo X D, An M R and Li Y L 2018 J. Non-Cryst. Solids500 121 [43] Xiao L 2005 Mater. Sci. Eng. A394 168 [44] Wang Q, Yin Y F, Sun Q Y, Xiao L and Sun J 2014 J. Mater. Res.29 569 [45] Su M J, Deng Q, An M R, Liu L T and Chen L Y 2021 J. Alloys Compd.868 159282 [46] Plimpton S1995 J. Comput. Phys.117 1 [47] Wadley H N G, Zhou X, Johnson R A and Neurock M 2001 Prog. Mater. Sci.46 329 [48] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-Long A K, Smith G D W, Cliftond P H, Martens R L and Kelly T F 2001 Acta Mater.49 4005 [49] Tian Y Y, Li J, Hu Z Y, Wang Z P and Fang Q H 2017 Chin. Phys. B26 126802 [50] Chen S D, Ke F J, Zhou M and Bai Y L 2007 Acta Mater.55 3169 [51] Faken D and Jónsson H 1994 Comput. Mater. Sci.2 279 [52] Shimizu F, Ogata S and Li J 2007 Mater. Trans.48 2923 [53] Stukowski A 2009 Model. Simul. Mater. Sci. Eng.18 015012 [54] Ashby M F 1993 Acta Metall. Mater.41 1313 [55] Zhu X Y, Liu X J, Zeng F and Pan F 2010 Trans. Nonferr. Metal. Soc.20 110 [56] Su M J, Deng Q, An M R, Liu L T and Ma C B 2019 Comput. Mater. Sci.158 149 [57] Greer A L and Ma E 2007 MRS Bull.32 611 [58] An M R, Deng Q, Li Y L, Song H Y, Su M J and Cai J 2017 Mater. Des.127 204 [59] Ren J Q, Sun Q Y, Xiao L, Ding X D and Sun J 2014 Comput. Mater. Sci.92 8 [60] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J and Ma E 2014 Nat. Commun.5 3297 [61] Sun Q, Zhang X Y, Ren Y, Tu J and Liu Q2014 Scr. Mater.90-91 41 [62] Zhao H L, Hu X Y, Song M and Ni S 2017 Scr. Mater.132 63 [63] Yu Q, Kacher J, Gammer C, Traylor R, Samanta A, Yang Z Z and Minor A M 2017 Scr. Mater.140 9 [64] Hong D H, Lee T W, Lim S H, Kim W Y and Hwang S K 2013 Scr. Mater.69 405 [65] Wu H C, Kumar A, Wang J, Bi X F, Tomé C N, Zhang Z and Mao S X 2016 Sci. Rep.6 24370 [66] Chen P, Wang F X and Li B 2019 Acta Mater.171 65 [67] An M R, Su M J, Deng Q, Song H Y, Wang C and Shang Y 2020 Chin. Phys. B29 046201 [68] Yang J X, Zhao H L, Gong H R, Song M and Ren Q Q 2018 Sci. Rep.8 1992 [69] An M R, Song H Y, Deng Q, Su M J and Liu Y M 2019 J. Appl. Phys.125 165307 [70] Wang Q Q, Liu Z Q, Wang B and Mohsan A U H 2017 Mater. Sci. Eng. A690 32 [71] Wang G, Liu Y H, Yu P, Zhao D Q, Pan M X and Wang W H 2006 Appl. Phys. Lett.89 251909 [72] He Y, Hu S M, Zhu W L and Ouyang G 2020 J. Phys. D: Appl. Phys.53 125101 [73] Zhao Y P, Tan S L and Ouyang G 2021 J. Phys. D: Appl. Phys.54 145107 [74] Song H Y, Wang M, Deng Q and Li Y L 2018 J. Non-Cryst. Solids490 13 [75] Cui Y, Shibutani Y, Li S, Huang P and Wang F 2017 J. Alloys Compd.693 285 [76] Zhang Y Y, Lin X, Gao X H, Su X L, Luo S B and Huang W D 2021 Intermetallics136 107256 [77] Song K K, Han X L, Pauly S, Qin Y S, Kosiba K, Peng C X, Gong J H, Chen P X, Wang L, Sarac B, Ketov S, Mühlbacher M, Spieckermann F, Kaban I and Eckert J 2018 Mater. Des.139 132
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.