Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 078801    DOI: 10.1088/1674-1056/acb0bc
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Stability of connected and automated vehicles platoon considering communications failures

Run-Kun Liu(刘润坤)1, Hai-Yang Yu(于海洋)1,2,, Yi-Long Ren(任毅龙)1,2,†, and Zhi-Yong Cui(崔志勇)1,2
1 School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control, Beihang University, Beijing 100191, China;
2 Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
Abstract  As a form of a future traffic system, a connected and automated vehicle (CAV) platoon is a typical nonlinear physical system. CAVs can communicate with each other and exchange information. However, communication failures can change the platoon system status. To characterize this change, a dynamic topology-based car-following model and its generalized form are proposed in this work. Then, a stability analysis method is explored. Finally, taking the dynamic cooperative intelligent driver model (DC-IDM) for example, a series of numerical simulations is conducted to analyze the platoon stability in different communication topology scenarios. The results show that the communication failures reduce the stability, but information from vehicles that are farther ahead and the use of a larger desired time headway can improve stability. Moreover, the critical ratio of communication failures required to ensure stability for different driving parameters is studied in this work.
Keywords:  connected and automated vehicle      car-following model      communication failures      string stability  
Received:  10 October 2022      Revised:  06 December 2022      Accepted manuscript online:  06 January 2023
PACS:  88.85.-r (Advanced vehicles)  
  89.40.-a (Transportation)  
Fund: Project supported by the National Key Research and Development Project of China (Grant No. 2018YFE0204300), the Beijing Municipal Science & Technology Commission (Grant No. Z211100004221008), and the National Natural Science Foundation of China (Grant No. U1964206).
Corresponding Authors:  Yi-Long Ren     E-mail:  yilongren@buaa.edu.cn

Cite this article: 

Run-Kun Liu(刘润坤), Hai-Yang Yu(于海洋), Yi-Long Ren(任毅龙), and Zhi-Yong Cui(崔志勇) Stability of connected and automated vehicles platoon considering communications failures 2023 Chin. Phys. B 32 078801

[1] Yu H, Jiang R, He Z, Zheng Z, Li L, Liu R and Chen X 2021 Transp. Res. Part C Emerg. Technol. 127 103101
[2] Anon 2018 SAE Int. Stand. J. 3016
[3] Chen L, Zhang Y, Li K, Li Q and Zheng Q 2021 Mod. Phys. Lett. B 35 2150257
[4] Li M, Cao Z and Li Z 2021 IEEE Trans. Neural. Netw Learn. Syst. 1-14
[5] van Arem B, van Driel C J G and Visser R 2006 IEEE Trans. Intell. Transp. Syst. 7 429
[6] Ghiasi A, Hussain O, Qian Z Sean and Li X 2017 Transp. Res. Part B Methodol. 106 266
[7] Zhou L, Ruan T, Ma K, Dong C and Wang H 2021 Phys. Stat. Mech. Its Appl. 581 126193
[8] Jin S, Sun D H, Zhao M, Li Y and Chen J 2020 Phys. Stat. Mech. Its Appl. 551 124217
[9] Kenney J B 2011 Proc IEEE 99 1162
[10] Milanes V, Shladover S E, Spring J, Nowakowski C, Kawazoe H and Nakamura M 2014 IEEE Trans. Intell. Transp. Syst. 15 296
[11] Halder K, Montanaro U, Dixit S, Dianati M, Mouzakitis A and Fallah S 2022 IEEE Trans. Intell. Transp. Syst. 23 4373
[12] Wang P, Wu X and He X 2020 Transp. Res. Part C Emerg. Technol. 115 102625
[13] Maschuw Jan P and Abel D 2010 IFAC Proc. Vol. 43 785
[14] Ren W, Cheng R and Ge H 2021 Chin. Phys. B 30 120506
[15] Li Y, Li K, Zheng T, Hu X, Feng H and Li Y 2016 Phys. Stat. Mech. Its Appl. 450 359
[16] Wang C, Gong S, Zhou A, Li T and Peeta S 2020 Transp. Res. Part C Emerg. Technol. 113 124
[17] Xin Q, Fu R, Ukkusuri S V, Yu S and Jiang R 2021 Phys. Stat. Mech. Its Appl. 563 125452
[18] Bian Y, Zheng Y, Ren W, Li S E, Wang J and Li K 2019 Transp. Res. Part C Emerg. Technol. 102 87
[19] Abolfazli E, Besselink B and Charalambous T 2022 IEEE Trans. Intell. Transp. Syst. 23 8881
[20] Li Y, Sun D, Liu W, Zhang M, Zhao M, Liao X and Tang L 2011 Nonlinear Dyn. 66 15
[21] Sun J, Zheng Z and Sun J 2018 Transp. Res. Part B Methodol. 109 212
[22] VanderWerf J, Shladover S, Kourjanskaia N, Miller M and Krishnan H 2001 Transp. Res. Rec. 1748 167
[23] Schakel W J, van Arem B and Netten B D 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010) (IEEE) pp. 759-764
[24] Sharma A, Zheng Z, Bhaskar A and Haque Md M 2019 Transp. Res. Part B Methodol. 126 256
[25] Kesting A, Treiber M and Helbing D 2010 Phil. Trans. R. Soc. A 368 4585
[26] Kuang H, Xu Z P, Li X L and Lo S M 2017 Nonlinear Dyn. 87 149
[27] Li Z, Liu L, Xu S and Qian Y 2015 Nonlinear Dyn. 81 2059
[28] Li T, Ngoduy D, Hui F and Zhao X 2020 Transp. B Transp. Dyn. 8 150
[29] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[30] Milanés V and Shladover S E 2014 Transp. Res. Part C Emerg. Technol. 48 285
[31] Feng S, Zhang Y, Li S E, Cao Z, Liu H X and Li L 2019 Annu. Rev. Control. 47 81
[32] Zheng Y, Li S E, Wang J, Wang L Y and Li K 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC) (IEEE) pp. 2094-2100
[33] Rahman M H, Abdel-Aty M and Wu Y 2021 Transp. Res. Part C Emerg. Technol. 124 102887
[34] Dunn D D, Mitchell S A, Sajjad I, Gerdes R M, Sharma R and Li M 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (IEEE) pp. 499-510
[35] Davis L C 2018 Phys. Stat. Mech. Its Appl. 503 818
[36] Yao Z, Xu T, Jiang Y and Hu R 2021 Phys. Stat. Mech. Its Appl. 561 125218
[37] Ruan T, Wang H, Zhou L, Zhang Y, Dong C and Zuo Z 2022 IEEE Trans. Intell. Transp. Syst. 23 20820
[38] Ruan T, Zhou L and Wang H 2021 Phys. Stat. Mech. Its Appl. 583 126294
[39] Liu R, Ren Y, Yu H, Li Z and Jiang H 2022 Veh. Commun. 35 100467
[40] Jia D and Ngoduy D 2016 Transp. Res. Part C Emerg. Technol. 68 245
[41] Wang P, Deng H, Zhang J, Wang L, Zhang M and Li Y 2021 IEEE Trans. Intell. Transp. Syst. 1-14
[42] Zhai C and Wu W 2021 Nonlinear Dyn. 106 3379
[43] Li K, Bian Y, Li S E, Xu B and Wang J 2020 Transp. Res. Part C Emerg. Technol. 118 102717
[44] Navas F and Milanés V 2019 Transp. Res. Part C Emerg. Technol. 108 167
[45] Tang T, Shi W, Shang H and Wang Y 2014 Nonlinear Dyn. 76 2017
[46] Orosz G, Wilson R E, Szalai R and Stépán G 2009 Phys. Rev. E 80 046205
[47] Peng G H 2020 Chin. Phys. B 29 084501
[48] Monteil J, Billot R, Sau J and El Faouzi N?E 2014 IEEE Trans. Intell. Transp. Syst. 15 2001
[49] Zhai C and Wu W 2018 Phys. Lett. A 382 3381
[50] Talebpour A and Mahmassani H S 2016 Transp. Res. Part C Emerg. Technol. 71 143
[51] Wilson R E and Ward J A 2011 Transp. Plan. Technol. 34 3
[52] Ngoduy D 2015 Commun. Nonlinear Sci. Numer. Simul. 22 420
[53] Zheng Y Z, Cheng R J, Lo S M and Ge H X 2016 Chin. Phys. B 25 060506
[54] Ward J A 2008 Heterogeneity, Lane-Changing and Instability in Traffic: A Mathematical Approach, Ph.D thesis (Bristol: University of Bristol)
[55] Yao Z, Hu R, Wang Y, Jiang Y, Ran B and Chen Y 2019 Phys. Stat. Mech. Its Appl. 533 121931
[1] Efficient control of connected and automated vehicles on a two-lane highway with a moving bottleneck
Huaqing Liu(刘华清) and Rui Jiang(姜锐). Chin. Phys. B, 2023, 32(5): 054501.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[5] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[6] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[7] Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics
Cong Zhai(翟聪), Weitiao Wu(巫威眺), and Songwen Luo(罗淞文). Chin. Phys. B, 2021, 30(10): 100507.
[8] Nonlinear density wave and energy consumption investigation of traffic flow on a curved road
Zhizhan Jin(金智展), Rongjun Cheng(程荣军), Hongxia Ge(葛红霞). Chin. Phys. B, 2017, 26(11): 110504.
[9] Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Ning Bin (宁滨), Roberts Clive, Chen Lei (陈磊), Sun Xu-Bin (孙绪彬). Chin. Phys. B, 2015, 24(9): 090506.
[10] A new coupled map car-following model considering drivers’ steady desired speed
Zhou Tong (周桐), Sun Di-Hua (孙棣华), Li Hua-Min (李华民), Liu Wei-Ning (刘卫宁). Chin. Phys. B, 2014, 23(5): 050203.
[11] A control method applied to mixed traffic flow for the coupled-map car-following model
Cheng Rong-Jun (程荣军), Han Xiang-Lin (韩祥临), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(3): 030507.
[12] An improved car-following model with consideration of the lateral effect and its feedback control research
Zheng Ya-Zhou (郑亚周), Zheng Peng-Jun (郑彭军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(2): 020503.
[13] Feedback control scheme of traffic jams based on the coupled map car-following model
Zhou Tong (周桐), Sun Di-Hua (孙棣华), Zhao Min (赵敏), Li Hua-Min (李华民). Chin. Phys. B, 2013, 22(9): 090205.
[14] A new coupled-map car-following model based on a transportation supernetwork framework
Yao Jing (姚静), Huang Jing-Yi (黄婧祎), Chen Guan-Rong (陈关荣), Xu Wei-Sheng (许维胜). Chin. Phys. B, 2013, 22(6): 060208.
[15] Simulation optimization for train movement on single-track railway
Ye Jing-Jing (叶晶晶), Li Ke-Ping (李克平). Chin. Phys. B, 2013, 22(5): 050205.
No Suggested Reading articles found!